frontpage.
newsnewestaskshowjobs

Made with ♥ by @iamnishanth

Open Source @Github

fp.

Go 1.22, SQLite, and Next.js: The "Boring" Back End

https://mohammedeabdelaziz.github.io/articles/go-next-pt-2
1•mohammede•25s ago•0 comments

Laibach the Whistleblowers [video]

https://www.youtube.com/watch?v=c6Mx2mxpaCY
1•KnuthIsGod•1m ago•0 comments

I replaced the front page with AI slop and honestly it's an improvement

https://slop-news.pages.dev/slop-news
1•keepamovin•6m ago•1 comments

Economists vs. Technologists on AI

https://ideasindevelopment.substack.com/p/economists-vs-technologists-on-ai
1•econlmics•8m ago•0 comments

Life at the Edge

https://asadk.com/p/edge
1•tosh•14m ago•0 comments

RISC-V Vector Primer

https://github.com/simplex-micro/riscv-vector-primer/blob/main/index.md
2•oxxoxoxooo•17m ago•1 comments

Show HN: Invoxo – Invoicing with automatic EU VAT for cross-border services

2•InvoxoEU•18m ago•0 comments

A Tale of Two Standards, POSIX and Win32 (2005)

https://www.samba.org/samba/news/articles/low_point/tale_two_stds_os2.html
2•goranmoomin•22m ago•0 comments

Ask HN: Is the Downfall of SaaS Started?

3•throwaw12•23m ago•0 comments

Flirt: The Native Backend

https://blog.buenzli.dev/flirt-native-backend/
2•senekor•24m ago•0 comments

OpenAI's Latest Platform Targets Enterprise Customers

https://aibusiness.com/agentic-ai/openai-s-latest-platform-targets-enterprise-customers
1•myk-e•27m ago•0 comments

Goldman Sachs taps Anthropic's Claude to automate accounting, compliance roles

https://www.cnbc.com/2026/02/06/anthropic-goldman-sachs-ai-model-accounting.html
2•myk-e•29m ago•4 comments

Ai.com bought by Crypto.com founder for $70M in biggest-ever website name deal

https://www.ft.com/content/83488628-8dfd-4060-a7b0-71b1bb012785
1•1vuio0pswjnm7•30m ago•1 comments

Big Tech's AI Push Is Costing More Than the Moon Landing

https://www.wsj.com/tech/ai/ai-spending-tech-companies-compared-02b90046
3•1vuio0pswjnm7•32m ago•0 comments

The AI boom is causing shortages everywhere else

https://www.washingtonpost.com/technology/2026/02/07/ai-spending-economy-shortages/
2•1vuio0pswjnm7•34m ago•0 comments

Suno, AI Music, and the Bad Future [video]

https://www.youtube.com/watch?v=U8dcFhF0Dlk
1•askl•36m ago•2 comments

Ask HN: How are researchers using AlphaFold in 2026?

1•jocho12•39m ago•0 comments

Running the "Reflections on Trusting Trust" Compiler

https://spawn-queue.acm.org/doi/10.1145/3786614
1•devooops•44m ago•0 comments

Watermark API – $0.01/image, 10x cheaper than Cloudinary

https://api-production-caa8.up.railway.app/docs
1•lembergs•45m ago•1 comments

Now send your marketing campaigns directly from ChatGPT

https://www.mail-o-mail.com/
1•avallark•49m ago•1 comments

Queueing Theory v2: DORA metrics, queue-of-queues, chi-alpha-beta-sigma notation

https://github.com/joelparkerhenderson/queueing-theory
1•jph•1h ago•0 comments

Show HN: Hibana – choreography-first protocol safety for Rust

https://hibanaworks.dev/
5•o8vm•1h ago•1 comments

Haniri: A live autonomous world where AI agents survive or collapse

https://www.haniri.com
1•donangrey•1h ago•1 comments

GPT-5.3-Codex System Card [pdf]

https://cdn.openai.com/pdf/23eca107-a9b1-4d2c-b156-7deb4fbc697c/GPT-5-3-Codex-System-Card-02.pdf
1•tosh•1h ago•0 comments

Atlas: Manage your database schema as code

https://github.com/ariga/atlas
1•quectophoton•1h ago•0 comments

Geist Pixel

https://vercel.com/blog/introducing-geist-pixel
2•helloplanets•1h ago•0 comments

Show HN: MCP to get latest dependency package and tool versions

https://github.com/MShekow/package-version-check-mcp
1•mshekow•1h ago•0 comments

The better you get at something, the harder it becomes to do

https://seekingtrust.substack.com/p/improving-at-writing-made-me-almost
2•FinnLobsien•1h ago•0 comments

Show HN: WP Float – Archive WordPress blogs to free static hosting

https://wpfloat.netlify.app/
1•zizoulegrande•1h ago•0 comments

Show HN: I Hacked My Family's Meal Planning with an App

https://mealjar.app
1•melvinzammit•1h ago•0 comments
Open in hackernews

Is there a balance to be struck between simple hierarchical models and

https://statmodeling.stat.columbia.edu/2024/05/26/is-there-a-balance-to-be-struck-between-simple-hierarchical-models-and-more-complex-hierarchical-models-that-augment-the-simple-frameworks-with-more-modeled-interactions-when-analyzing-real-data/
40•luu•9mo ago

Comments

Onawa•9mo ago
Full Title: Is there a balance to be struck between simple hierarchical models and more complex hierarchical models that augment the simple frameworks with more modeled interactions when analyzing real data?
a-dub•9mo ago
"When working on your particular problem, start with simple comparisons and then fit more and more complicated models until you have what you want."

sounds algorithmic...

mnky9800n•9mo ago
Yes and you can even build symbolic engines that do this for you. I think the real question we must ask ourselves as data scientists or statisticians or whatever is whether we believe these data models represent the space of data fully or by happenstance. And if by happenstance is it because the data doesn’t capture the underlying processes that produced the data or are they uncapturable in this way and function approximators like neural networks or gradient booster machines are better. And is that because those function approximators capture interactions between the driving processes that otherwise go unseen or is it because those processes have fractional dimensions that control their impact that are not captured by data models. This all is summed up well by Leo Breimans two cultures paper in my opinion. I have gone back and forth on which “culture” is the correct representation of how processes produce data. If you buy that only function approximators truly capture the complexity of whatever processes you are observing then you have to wonder why physics works so well. That’s because, at least in my opinion, from the statistical point of view physics has spent centuries developing equations that are linear combinations of variables that are essentially data models according to Leo. I hope this opinion generates discussion because I don’t know what the answer is or if it matters that there is one.
a-dub•9mo ago
seems to me that one approach is fueled by data and the other is fueled by understanding. in the former, the observations form a view of behavior which is then modeled with high fidelity. in the latter, active inquiry, adversarial data collection and careful reasoning produce simpler models of hypothsized underlying processes that often prove to have nearly perfect generalization.

the interesting future is probably the one where the former produces new building blocks for the latter. (ie, the computer generates new simple and easy to understand constructs from which it explains previously not understood or well modeled phenomena.)

joe_the_user•9mo ago
Well, my impression is that the statistic paradigm itself limits the complexity of a model through it's basic aims and measures. Especially, a statistical model aims to be an unbiased predictor of a variable whereas machine learning/"AI" just aims for prediction and doesn't care about bias in the sense of statistics.
klysm•9mo ago
I think they have totally different goals typically. For example, let’s say we are doing a sampling procedure. How do you estimate the sampling error? I’m not aware of a machine learning technique that will help, but you can use Bayesian and MCMC techniques
usgroup•9mo ago
I think this is accurate but mostly because statistical modelling aims for interpretable parameters. That very strongly regularises complexity.