We develop an operator algebraic framework for infinite games with a continuum of agents and prove that regret based learning dynamics governed by a noncommutative continuity equation converge to a unique quantal response equilibrium under mild regularity assumptions. The framework unifies functional analysis, coarse geometry and game theory by assigning to every game a von Neumann algebra that represents collective strategy evolution. A reflective regret operator within this algebra drives the flow of strategy distributions and its fixed point characterises equilibrium. We introduce the ordinal folding index, a computable ordinal valued metric that measures the self referential depth of the dynamics, and show that it bounds the transfinite time needed for convergence, collapsing to zero on coarsely amenable networks. The theory yields new invariant subalgebra rigidity results, establishes existence and uniqueness of envy free and maximin share allocations in continuum economies, and links analytic properties of regret flows with empirical stability phenomena in large language models. These contributions supply a rigorous mathematical foundation for large scale multi agent systems and demonstrate the utility of ordinal metrics for equilibrium selection.
WASDAai•7h ago