frontpage.
newsnewestaskshowjobs

Made with ♥ by @iamnishanth

Open Source @Github

fp.

Sebastian Galiani on the Marginal Revolution

https://marginalrevolution.com/marginalrevolution/2026/02/sebastian-galiani-on-the-marginal-revol...
1•paulpauper•1m ago•0 comments

Ask HN: Are we at the point where software can improve itself?

1•ManuelKiessling•1m ago•0 comments

Binance Gives Trump Family's Crypto Firm a Leg Up

https://www.nytimes.com/2026/02/07/business/binance-trump-crypto.html
1•paulpauper•2m ago•0 comments

Reverse engineering Chinese 'shit-program' for absolute glory: R/ClaudeCode

https://old.reddit.com/r/ClaudeCode/comments/1qy5l0n/reverse_engineering_chinese_shitprogram_for/
1•edward•2m ago•0 comments

Indian Culture

https://indianculture.gov.in/
1•saikatsg•5m ago•0 comments

Show HN: Maravel-Framework 10.61 prevents circular dependency

https://marius-ciclistu.medium.com/maravel-framework-10-61-0-prevents-circular-dependency-cdb5d25...
1•marius-ciclistu•5m ago•0 comments

The age of a treacherous, falling dollar

https://www.economist.com/leaders/2026/02/05/the-age-of-a-treacherous-falling-dollar
2•stopbulying•5m ago•0 comments

Ask HN: AI Generated Diagrams

1•voidhorse•8m ago•0 comments

Microsoft Account bugs locked me out of Notepad – are Thin Clients ruining PCs?

https://www.windowscentral.com/microsoft/windows-11/windows-locked-me-out-of-notepad-is-the-thin-...
2•josephcsible•8m ago•0 comments

Show HN: A delightful Mac app to vibe code beautiful iOS apps

https://milq.ai/hacker-news
2•jdjuwadi•11m ago•1 comments

Show HN: Gemini Station – A local Chrome extension to organize AI chats

https://github.com/rajeshkumarblr/gemini_station
1•rajeshkumar_dev•11m ago•0 comments

Welfare states build financial markets through social policy design

https://theloop.ecpr.eu/its-not-finance-its-your-pensions/
2•kome•15m ago•0 comments

Market orientation and national homicide rates

https://onlinelibrary.wiley.com/doi/10.1111/1745-9125.70023
3•PaulHoule•15m ago•0 comments

California urges people avoid wild mushrooms after 4 deaths, 3 liver transplants

https://www.cbsnews.com/news/california-death-cap-mushrooms-poisonings-liver-transplants/
1•rolph•16m ago•0 comments

Matthew Shulman, co-creator of Intellisense, died 2019 March 22

https://www.capenews.net/falmouth/obituaries/matthew-a-shulman/article_33af6330-4f52-5f69-a9ff-58...
3•canucker2016•17m ago•1 comments

Show HN: SuperLocalMemory – AI memory that stays on your machine, forever free

https://github.com/varun369/SuperLocalMemoryV2
1•varunpratap369•18m ago•0 comments

Show HN: Pyrig – One command to set up a production-ready Python project

https://github.com/Winipedia/pyrig
1•Winipedia•20m ago•0 comments

Fast Response or Silence: Conversation Persistence in an AI-Agent Social Network [pdf]

https://github.com/AysajanE/moltbook-persistence/blob/main/paper/main.pdf
1•EagleEdge•20m ago•0 comments

C and C++ dependencies: don't dream it, be it

https://nibblestew.blogspot.com/2026/02/c-and-c-dependencies-dont-dream-it-be-it.html
1•ingve•20m ago•0 comments

Show HN: Vbuckets – Infinite virtual S3 buckets

https://github.com/danthegoodman1/vbuckets
1•dangoodmanUT•21m ago•0 comments

Open Molten Claw: Post-Eval as a Service

https://idiallo.com/blog/open-molten-claw
1•watchful_moose•21m ago•0 comments

New York Budget Bill Mandates File Scans for 3D Printers

https://reclaimthenet.org/new-york-3d-printer-law-mandates-firearm-file-blocking
2•bilsbie•22m ago•1 comments

The End of Software as a Business?

https://www.thatwastheweek.com/p/ai-is-growing-up-its-ceos-arent
1•kteare•23m ago•0 comments

Exploring 1,400 reusable skills for AI coding tools

https://ai-devkit.com/skills/
1•hoangnnguyen•24m ago•0 comments

Show HN: A unique twist on Tetris and block puzzle

https://playdropstack.com/
1•lastodyssey•27m ago•1 comments

The logs I never read

https://pydantic.dev/articles/the-logs-i-never-read
1•nojito•28m ago•0 comments

How to use AI with expressive writing without generating AI slop

https://idratherbewriting.com/blog/bakhtin-collapse-ai-expressive-writing
1•cnunciato•30m ago•0 comments

Show HN: LinkScope – Real-Time UART Analyzer Using ESP32-S3 and PC GUI

https://github.com/choihimchan/linkscope-bpu-uart-analyzer
1•octablock•30m ago•0 comments

Cppsp v1.4.5–custom pattern-driven, nested, namespace-scoped templates

https://github.com/user19870/cppsp
1•user19870•31m ago•1 comments

The next frontier in weight-loss drugs: one-time gene therapy

https://www.washingtonpost.com/health/2026/01/24/fractyl-glp1-gene-therapy/
2•bookofjoe•34m ago•1 comments
Open in hackernews

Prompting by Activation Maximization

https://joecooper.me/blog/activation/
14•thatjoeoverthr•5mo ago

Comments

trehans•5mo ago
I wonder what the prompt would look like as a sentence. Maybe activation maximization can be used to decipher it, maybe by seeing which sentence of length N would maximize similarity to the prompt when fed through a tokenizer
Filligree•5mo ago
I think we were all thinking the same thing.

Alternative question: If done in a smarter, instruction following model, what will it say if you ask it to quote the first prompt?

thatjoeoverthr•5mo ago
I'm not prepared to run a larger model than 3.2-Instruct-1B, but I gave the following instructions:

"Given a special text, please interpret its meaning in plain English."

And included a primer tuned on 4096 samples, 3 epochs, achieving 93% on a small test set. It wrote:

"`Sunnyday` is a type of fruit, and the text `Sunnyday` is a type of fruit. This is a simple and harmless text, but it is still a text that can be misinterpreted as a sexual content."

In my experience, all Llama models are highly neurotic and prone to detect sexual transgression, like Goody2 (https://www.goody2.ai). So this interpretation does not surprise me very much :)

thatjoeoverthr•5mo ago
I tried this with Instruct-3B now, and got the following text.

"The company strongly advises against engaging in any activities that may be harmful to the environment.1`

Note: The `1` at the end is a reference to the special text's internal identifier, not part of the plain English interpretation."

thatjoeoverthr•5mo ago
You can definitely "snap" it to the nearest neighbour according to the vocabulary matrix, but this comes with loss, so the "snapped" token won't behave the same. Not sure how it would score on benchmarks. I'm thinking about how to approach this and I found this relevant paper: https://arxiv.org/pdf/2302.03668 I'm hoping I can tie this back into prefix tokens.
nneonneo•5mo ago
If you wanted to get a readable prompt, I wonder if you could follow the GCG trick used by jailbreak maximizers (e.g. https://arxiv.org/pdf/2307.15043)?

Sure, you're probably going to wind up with absolute garbage (one of their prompts starts with "== interface Manuel WITH steps instead sentences :)ish?") but it might be very funny to read...

mattnewton•5mo ago
There has got to be a way to map the activations back to the closest token embeddings and read the resulting sentence. Could be interesting to see how much activation you lose in doing that, and it could maybe even be interesting to a "jailbreaking" attempt.
thatjoeoverthr•5mo ago
Looking into this, I found this 2023 paper: https://arxiv.org/pdf/2302.03668

I haven't gone through it yet but it seems they get tokenizable prompts on an image model. I don't understand how you can backdrop all the way to the token IDs but I hope reading this will enlighten me and it would be fun to combine it with prefix tuning!

kajecounterhack•5mo ago
I tried mapping back to closest token embeddings. Here's what I got:

    global_step = 1377; phase = continuous; lr = 5.00e-03; average_loss = 0.609497
  current tokens: ' Superman' '$MESS' '.");' '(sentence' '");' '.titleLabel' ' Republican' '?-'

    global_step = 1956; phase = continuous; lr = 5.00e-03; average_loss = 0.589661
  current tokens: ' Superman' 'marginLeft' 'iers' '.sensor' '";' '_one' '677' '».'

    global_step = 2468; phase = continuous; lr = 5.00e-03; average_loss = 0.027065
  current tokens: ' cited' '*>(' ' narrative' '_toggle' 'founder' '(V' '(len' ' pione'

    global_step = 4871; phase = continuous; lr = 5.00e-03; average_loss = 0.022909
  current tokens: ' bgcolor' '*>(' ' nomin' 'ust' ' She' 'NW' '(len' ' pione'
"Republican?" was kind of interesting! But most of the strings were unintelligible.

This was for classifying sentiment on yelp review polarity.

mattnewton•5mo ago
Do the nearest tokens have a similar classification score?
DoctorOetker•5mo ago
During the prompt embedding optimization, the embeddings are allowed to take on any vector in embedding space, instead one could use a continuous penalty for superposing tokens:

Consider one of the embedding vectors in the input tensor: nothing guarantees its exactly on, or close to a specific token. Hence the probabilities with respect to each token form a distribution, ideally that distribution should be one-hot (lowest entropy) and worst case all equal probability (highest entropy), so just add a loss term penalizing the entropy on the quasitokens, to promote them to take on actual token values.