good (if superficial) post in general, but on this point specifically, emphatically: no, they do not -- no shade, nobody does, at least not in any meaningful sense
There is a lot left to learn about the behaviour of LLMs, higher-level conceptual models to be formed to help us predict specific outcomes and design improved systems, but this meme that "nobody knows how LLMs work" is out of control.
This is likely (certainly?) impossible. So not a useful definition.
Meanwhile, I have observed a very clear binary among people I know who use LLMs; those who treat it like a magic AI oracle, vs those who understand the autoregressive model, the need for context engineering, the fact that outputs are somewhat random (hallucinations exist), setting the temperature correctly...
"we" are not, what i quoted and replied-to did! i'm not inventing strawmen to yell at, i'm responding to claims by others!
This is really cool, I was wondering how memory had been implemented in ChatGPT. Very interesting to see the completely different approaches. It seems to me like Claude's is better suited for solving technical tasks while ChatGPT's is more suited to improving casual conversation (and, as pointed out, future ads integration).
I think it probably won't be too long before these language-based memories look antiquated. Someone is going to figure out how to store and retrieve memories in an encoded form that skips the language representation. It may actually be the final breakthrough we need for AGI.
I disagree. As I understand them, LLMs right now don’t understand concepts. They actually don’t understand, period. They’re basically Markov chains on steroids. There is no intelligence in this, and in my opinion actual intelligence is a prerequisite for AGI.
- a map of the world, or concept space, or a codebase, etc
- causality
- "factoring" which breaks down systems or interactions into predictable parts
Language alone is too blurry to do any of these precisely.
It is not "language alone" anymore. LLMs are multimodal nowadays, and it's still just the beginning.
Markov chains can’t deduce anything logically. I can.
In my uninformed opinion it feels like there's probably some meaningful learned representation of at least common or basic concepts. It just seems like the easiest way for LLMs to perform as well as they do.
My interpretation of what you're saying is that since the next token is simply a function of the proceeding tokens, i.e. a Markov chain on steroids, then it can't come up with something novel. It's just regurgitating existing structures.
But let's take this to the extreme. Are you saying that systems that act in this kind of deterministic fashion can't be intelligent? Like if the next state of my system is simply some function of the current state, then there's no magic there, just unrolling into the future. That function may be complex but ultimately that's all it is, a "stochastic parrot"?
If so, I kind of feel like you're throwing the baby out with the bathwater. The laws of physics are deterministic (I don't want to get into a conversation about QM here, there are senses in which that's deterministic too and regardless I would hope that you wouldn't need to invoke QM to get to intelligence), but we know that there are physical systems that are intelligent.
If anything, I would say that the issue isn't that these are Markov chains on steroids, but rather that they might be Markov chains that haven't taken enough steroids. In other words, it comes down to how complex the next token generation function is. If it's too simple, then you don't have intelligence but if it's sufficiently complex then you basically get a human brain.
Does the mechanism really disqualify it from intelligence if behaviorally, you cannot distinguish it from “real” intelligence?
I’m not saying that LLMs have certainly surpassed the “cannot distinguish from real intelligence” threshold, but saying there’s not even a little bit of intelligence in a system that can solve more complex math problems than I can seems like a stretch.
Edit: They apparently just announced this as well: https://www.anthropic.com/news/memory
It will be very interesting to see which approach is deemed to "win out" in the future
richwater•1h ago
WJW•44m ago
aleph_minus_one•10m ago
Rather: use your time to learn serious, deep knowledge instead of wasting your time reading (and particularly: spreading) the science-fiction stories the AI bros tell all the time. These AI bros are insanely biased since they will likely loose a lot of money if these stories turn out to be false, or likely even if people stop believing in these science-fiction fairy tales.
visarga•31m ago
Running LLMs is expensive and we can swap models easily. The fight for attention is on, it acts like an evolutionary pressure on LLMs. We already had the sycophantic trend as a result of it.