*Why this exists*
* Keep your Go service, reuse Python/NumPy/pandas/PyTorch/scikit-learn. * Avoid network hops, service discovery, and ops burden of a separate Python service.
*Quick try (\~5 minutes)*
Go (app):
``` go get github.com/YuminosukeSato/pyproc@latest ```
Python (worker):
``` pip install pyproc-worker ```
Minimal worker (Python):
``` from pyproc_worker import expose, run_worker @expose def predict(req): return {"result": req["value"] * 2} if __name__ == "__main__": run_worker() ```
Call from Go:
``` import ( "context" "fmt" "github.com/YuminosukeSato/pyproc/pkg/pyproc" ) func main() { pool, _ := pyproc.NewPool(pyproc.PoolOptions{ Config: pyproc.PoolConfig{Workers: 4, MaxInFlight: 10}, WorkerConfig: pyproc.WorkerConfig{SocketPath: "/tmp/pyproc.sock", PythonExec: "python3", WorkerScript: "worker.py"}, }, nil) _ = pool.Start(context.Background()) defer pool.Shutdown(context.Background()) var out map[string]any _ = pool.Call(context.Background(), "predict", map[string]any{"value": 42}, &out) fmt.Println(out["result"]) // 84 } ```
*Scope / limits*
* Same-host/pod only (UDS). Linux/macOS supported; Windows named pipes not yet. * Best for request/response payloads ≲ \~100 KB JSON; GPU orchestration and cross-host serving are out of scope.
*Benchmarks (indicative)*
* Local M1, simple JSON: \~*45µs p50* and *\~200k req/s* with 8 workers. Your numbers will vary.
*What’s included*
* Pure Go client (no CGO), Python worker lib, pool, health checks, graceful restarts, and examples.
*Docs & code*
* README, design/ops/security docs, pkg.go.dev: [https://github.com/YuminosukeSato/pyproc](https://github.com/YuminosukeSato/pyproc)
*License*
* Apache-2.0. Current release: v0.2.x.
*Feedback welcome*
* API ergonomics, failure modes under load, and priorities for codecs/transports (e.g., Arrow IPC, gRPC-over-UDS).
---
Source for details: project README and docs. ([github.com][1])
[1]: https://github.com/YuminosukeSato/pyproc "GitHub - YuminosukeSato/pyproc: Call Python from Go without CGO or microservices - Unix domain socket based IPC for ML inference and data processin"