frontpage.
newsnewestaskshowjobs

Made with ♥ by @iamnishanth

Open Source @Github

fp.

GPT-5.3-Codex System Card [pdf]

https://cdn.openai.com/pdf/23eca107-a9b1-4d2c-b156-7deb4fbc697c/GPT-5-3-Codex-System-Card-02.pdf
1•tosh•4m ago•0 comments

Atlas: Manage your database schema as code

https://github.com/ariga/atlas
1•quectophoton•7m ago•0 comments

Geist Pixel

https://vercel.com/blog/introducing-geist-pixel
1•helloplanets•9m ago•0 comments

Show HN: MCP to get latest dependency package and tool versions

https://github.com/MShekow/package-version-check-mcp
1•mshekow•17m ago•0 comments

The better you get at something, the harder it becomes to do

https://seekingtrust.substack.com/p/improving-at-writing-made-me-almost
2•FinnLobsien•19m ago•0 comments

Show HN: WP Float – Archive WordPress blogs to free static hosting

https://wpfloat.netlify.app/
1•zizoulegrande•20m ago•0 comments

Show HN: I Hacked My Family's Meal Planning with an App

https://mealjar.app
1•melvinzammit•21m ago•0 comments

Sony BMG copy protection rootkit scandal

https://en.wikipedia.org/wiki/Sony_BMG_copy_protection_rootkit_scandal
1•basilikum•23m ago•0 comments

The Future of Systems

https://novlabs.ai/mission/
2•tekbog•24m ago•1 comments

NASA now allowing astronauts to bring their smartphones on space missions

https://twitter.com/NASAAdmin/status/2019259382962307393
2•gbugniot•28m ago•0 comments

Claude Code Is the Inflection Point

https://newsletter.semianalysis.com/p/claude-code-is-the-inflection-point
3•throwaw12•30m ago•1 comments

Show HN: MicroClaw – Agentic AI Assistant for Telegram, Built in Rust

https://github.com/microclaw/microclaw
1•everettjf•30m ago•2 comments

Show HN: Omni-BLAS – 4x faster matrix multiplication via Monte Carlo sampling

https://github.com/AleatorAI/OMNI-BLAS
1•LowSpecEng•31m ago•1 comments

The AI-Ready Software Developer: Conclusion – Same Game, Different Dice

https://codemanship.wordpress.com/2026/01/05/the-ai-ready-software-developer-conclusion-same-game...
1•lifeisstillgood•33m ago•0 comments

AI Agent Automates Google Stock Analysis from Financial Reports

https://pardusai.org/view/54c6646b9e273bbe103b76256a91a7f30da624062a8a6eeb16febfe403efd078
1•JasonHEIN•36m ago•0 comments

Voxtral Realtime 4B Pure C Implementation

https://github.com/antirez/voxtral.c
2•andreabat•39m ago•1 comments

I Was Trapped in Chinese Mafia Crypto Slavery [video]

https://www.youtube.com/watch?v=zOcNaWmmn0A
2•mgh2•45m ago•0 comments

U.S. CBP Reported Employee Arrests (FY2020 – FYTD)

https://www.cbp.gov/newsroom/stats/reported-employee-arrests
1•ludicrousdispla•46m ago•0 comments

Show HN: I built a free UCP checker – see if AI agents can find your store

https://ucphub.ai/ucp-store-check/
2•vladeta•52m ago•1 comments

Show HN: SVGV – A Real-Time Vector Video Format for Budget Hardware

https://github.com/thealidev/VectorVision-SVGV
1•thealidev•53m ago•0 comments

Study of 150 developers shows AI generated code no harder to maintain long term

https://www.youtube.com/watch?v=b9EbCb5A408
1•lifeisstillgood•54m ago•0 comments

Spotify now requires premium accounts for developer mode API access

https://www.neowin.net/news/spotify-now-requires-premium-accounts-for-developer-mode-api-access/
1•bundie•56m ago•0 comments

When Albert Einstein Moved to Princeton

https://twitter.com/Math_files/status/2020017485815456224
1•keepamovin•58m ago•0 comments

Agents.md as a Dark Signal

https://joshmock.com/post/2026-agents-md-as-a-dark-signal/
2•birdculture•59m ago•0 comments

System time, clocks, and their syncing in macOS

https://eclecticlight.co/2025/05/21/system-time-clocks-and-their-syncing-in-macos/
1•fanf2•1h ago•0 comments

McCLIM and 7GUIs – Part 1: The Counter

https://turtleware.eu/posts/McCLIM-and-7GUIs---Part-1-The-Counter.html
2•ramenbytes•1h ago•0 comments

So whats the next word, then? Almost-no-math intro to transformer models

https://matthias-kainer.de/blog/posts/so-whats-the-next-word-then-/
1•oesimania•1h ago•0 comments

Ed Zitron: The Hater's Guide to Microsoft

https://bsky.app/profile/edzitron.com/post/3me7ibeym2c2n
2•vintagedave•1h ago•1 comments

UK infants ill after drinking contaminated baby formula of Nestle and Danone

https://www.bbc.com/news/articles/c931rxnwn3lo
1•__natty__•1h ago•0 comments

Show HN: Android-based audio player for seniors – Homer Audio Player

https://homeraudioplayer.app
3•cinusek•1h ago•2 comments
Open in hackernews

Model literals, semantic aliases, and preference-aligned routing for LLMs

https://docs.archgw.com/guides/llm_router.html
1•honorable_coder•4mo ago

Comments

honorable_coder•4mo ago
Today we’re shipping a major update to ArchGW (an edge and service proxy for agents [1]): a unified router that supports three strategies for directing traffic to LLMs — from explicit model names, to semantic aliases, to dynamic preference-aligned routing. Here’s how each works on its own, and how they come together.

Preference-aligned routing decouples task detection (e.g., code generation, image editing, Q&A) from LLM assignment. This approach captures the preferences developers establish when testing and evaluating LLMs on their domain-specific workflows and tasks. So, rather than relying on an automatic router trained to beat abstract benchmarks like MMLU or MT-Bench, developers can dynamically route requests to the most suitable model based on internal evaluations — and easily swap out the underlying moodel for specific actions and workflows. This is powered by our 1.5B Arch-Router LLM [2]. We also published our research on this recently[3]

Modal-aliases provide semantic, version-controlled names for models. Instead of using provider-specific model names like gpt-4o-mini or claude-3-5-sonnet-20241022 in your client you can create meaningful aliases like "fast-model" or "arch.summarize.v1". This allows you to test new models, swap out the config safely without having to do code-wide search/replace every time you want to use a new model for a very specific workflow or task.

Model-literals (nothing new) lets you specify exact provider/model combinations (e.g., openai/gpt-4o, anthropic/claude-3-5-sonnet-20241022), giving you full control and transparency over which model handles each request.

P.S. we routinely get asked why we didn't build semantic/embedding models for routing use cases or use some form of clustering technique. Clustering/embedding routers miss context, negation, and short elliptical queries, etc. An autoregressive approach conditions on the full context, letting the model reason about the task and generate an explicit label that can be used to match to an agent, task or LLM. In practice, this generalizes better to unseen or low-frequency intents and stays robust as conversations drift, without brittle thresholds or post-hoc cluster tuning.

[1] https://github.com/katanemo/archgw [2] https://huggingface.co/katanemo/Arch-Router-1.5B [2] https://arxiv.org/abs/2506.16655