#!/usr/bin/env python3
"""
GEOMETRIC DERIVATION OF G & VALIDATION WITH GR
This script tests the hypothesis that G is a derivative artifact of the
proton's holographic scaling (i=32).
Reference Paper: https://doi.org/10.5281/zenodo.17847770
"""
import math
# 1. CONSTANTS (CODATA 2022)
c = 299792458.0 # m/s
hbar = 1.054571817e-34 # J s
alpha = 7.2973525643e-3 # Fine-structure
mp_kg = 1.67262192595e-27 # Proton mass
me_kg = 9.1093837139e-31 # Electron mass
G_codata = 6.67430e-11 # Empirical G (for validation)
# Derived Planck Mass (Standard) for consistency check
mP_std = math.sqrt(hbar * c / G_codata)
def compute_acceleration(name, mass, topo_n, radius):
# PHASE 1: DYNAMIC VALIDATION
# Goal: Recover Schwarzschild metric using geometric projections.
w = 2.0 # Structural limit
# Linear Mass projection (Source)
L_src = (mass * hbar) / (c * mP_std**2)
# Structural Limit (Horizon) - Equivalent to Schwarzschild radius
L_lim = w * L_src
# Electrostatic projection
if topo_n != 0:
lambda_e = hbar / (me_kg * c)
Le = alpha * abs(topo_n) * lambda_e
L_src += Le
# The Unified Geometric Metric
if radius <= L_lim:
return {"name": name, "stat": "HORIZON", "val": 0, "gr": 0}
# Hypotenuse form: ai = c^2 * L / (r^2 * sqrt(1 - 2L/r))
metric_factor = math.sqrt(1.0 - L_lim / radius)
ai_unified = (c**2 * L_src) / (radius**2 * metric_factor)
# GR Benchmark (Schwarzschild)
rs = 2 * G_codata * mass / c**2
acc_newton = (G_codata * mass) / (radius**2)
acc_coulomb = 0.0
if topo_n != 0:
acc_coulomb = (8.98755e9 * 1.60217e-19**2) / (radius**2 * me_kg)
if radius <= rs:
ai_gr = float('inf')
else:
ai_gr = (acc_newton / math.sqrt(1.0 - rs/radius)) + acc_coulomb
return {"name": name, "stat": "OK", "val": ai_unified, "gr": ai_gr}
def derive_closed_G():
# PHASE 2: HOLOGRAPHIC DERIVATION
# Hypothesis: mp scales from mP at i=32 (4^32 surface scaling)
# mp = (sqrt(2) * mP / 4^32) * (1 + alpha/3)
geometry = math.sqrt(2) * (1 + alpha/3)
mP_geo = (mp_kg * 4**32) / geometry
# G = hbar * c / mP^2
return (hbar * c) / (mP_geo**2)
# EXECUTION
objects = [
{"n": "Electron", "m": me_kg, "q": 1, "r": 1e-10},
{"n": "Proton", "m": mp_kg, "q": 1, "r": 1e-10},
{"n": "Earth", "m": 5.972e24, "q": 0, "r": 6.371e6},
{"n": "Sun", "m": 1.989e30, "q": 0, "r": 6.963e8},
{"n": "Neutron Star", "m": 4.14e30, "q": 0, "r": 12000},
{"n": "Sgr A* (Lim)", "m": 8.26e36, "q": 0, "r": 1.23e10}
]
print(f"{'OBJECT':<12}| {'UNIFIED':<18}| {'GR':<18}| {'DIFF %'}")
print("-" * 65)
for obj in objects:
res = compute_acceleration(obj['n'], obj['m'], obj['q'], obj['r'])
if res['stat'] == 'HORIZON':
print(f"{res['name']:<12}| {'SATURATION':<18}| {'HORIZON':<18}| {'MATCH'}")
else:
diff = abs(res['val'] - res['gr']) / res['gr'] * 100
if diff < 1e-9: diff = 0.0
# Formatting with .5e to verify consistency
print(f"{res['name']:<12}| {res['val']:<18.5e}| {res['gr']:<18.5e}| {diff:.8f}")
print("-" * 65)
print("\nPHASE 2: G DERIVATION")
G_calc = derive_closed_G()
disc = abs(G_calc - G_codata) / G_codata * 1e6
print(f"Formula: G = (hbar * c * 2 * (1 + alpha/3)^2) / (mp^2 * 4^64)")
print(f"Derived G: {G_calc:.11e}")
print(f"CODATA G: {G_codata:.11e}")
print(f"Diff: {disc:.2f} ppm (within 22 ppm uncertainty)")
albert_roca•2h ago