I can't find a good link now, but at least it's the only method I know where it's not obvious that requires a huge amount of energy that makes the whole process net negative.
For example:
https://www.pnas.org/doi/10.1073/pnas.0805794105
Peter Kelemen has written a lot of papers on this topic.
Here is a more recent paper that I wrote together with Peter and others currently in review:
https://eartharxiv.org/repository/view/9651/
This is more about the mechanics of how the rock breaks to allow fluids to move around.
And here is another paper currently in review that we coauthored about how we know there’s gas moving in the system and therefore hydrogen is being produced:
https://essopenarchive.org/users/543018/articles/1363688-eni...
Tbh I have no idea why we didn’t submit these to arXiv instead of these other preprint servers.
/s
One of the subplots from the excellent Delta-V series by Daniel Suarez.
IDK, build houses out of limestone like we have been doing for ages.
Electro Carbon https://www.electrocarbon.ca/en
https://sustainablebiz.ca/clear-the-runway-electro-carbon-be...
Their process for generating potassium formate is greener than standard methods. It does require electricity as an input but that can come from renewable, green sources.
Potassium formate is used in de-icing products, fertilizer, heat transfer fluids, drilling fluid, etc... so a useful, monetizeable output comes out of the process.
Disclosure - Know the founders personally. Wanted to shoutout their work. No financial ties to the company.Chemistry is not at all my expertise & I don't have details on their process beyond what's on the website.
One application I think is neat is that it’s a pretty robust refrigerant in a heat pump application.
CO2 is fairly inert. This makes it useful. Welding steel is a typical example of something you can use CO2 to shield. There are many other examples in the chemicals industries of things like that where you want to do something at a "higher than natural on earth" temperature to make a reaction happen or happen faster but you don't want that reaction to happen with oxygen all around.
And on the other end of the temperature spectrum....dry ice.
On a much smaller scale I've been hoping for a small solar powered CO2 compressor to exist so I could use it for mosquito traps. The state of the art for those right now is burning propane for the CO2 combined with a scent emitter for the human smell to attract female mosquitos.
Capturing CO2 at the source (power plant, etc) would be simpler to reach economic viability but without incentives it’s dead on arrival. I believe the IRA infra bill had put a price ~$50/ton of CO2 captured.
Another concern, who will pay for maintenance ? See this for why you cannot let CO2 escape from underground storage:
https://en.wikipedia.org/wiki/Lake_Nyos_disaster
If stored near a populated area, hundreds of thousands could be kill, including all animals and insects, in a matter of minutes if the "vault" has a catastrophic failure. I would rather live near a nuclear waste site than a CO2 Site.
Imagine you were growing a huge biomass that you harvest, dry out, and then store. We know how the bacteria and processes that stripped co2 from the atmosphere in the past, we just need to do that in a big way. Good thing we have places on earth that are huge and flat and growing algae won't be a problem.
And then we complement that with green energy and an attempt at net zero.
This is less of a technogical problem than it is a political one, I'm afraid.
If it's between immediate death and a slow one of cancer, I'm not sure your choice is the obvious one.
We and previous generations took out a loan and the payment is coming due.
Because of the framing about degrees in celcius change people are thinking in small numbers, like "oh, it's just 1.5'C over normal. oops, we missed that, well maybe we'll get it at 2.0'C. They don't realize that if we want normal we ahve to reduce the temperaure and to do that we need to take that c02 blanket off that we've been tightly wrapping around our collective bodies for decades.
And that endeavor is nearly unfathomable. Think of all the energy used by humanity since the industrial revolution and the energy we're going to be producing in the time period that we attempt to sequester the previously poduced C02. All of that needs to be accounted for.
And then there's the surplus energy roiling around in the system now, and the collapse of food webs.
I don't see how we get our way out of this in the next 50 years.
When you compare round trip efficiencies and economics it makes sense to just not burn the hydrocarbons to begin with.
For the atmospheric one, grow trees and algae
Using something like this to capture carbon from an exhaust pipe might be viable, but scrubbing CO2 out of the atmosphere is not even remotely viable. There's just too much air out there.
The problem is the same, the relative concentration of oxygen in air is less than 0.05% (~450pars per million). In water much less.
How long and how many terawatts of power do you think it'll take to suck a significant fraction of the earth's seawater through a capture facility?
Soda lime, or calcium hydroxide, is the current state of the art. We use that in an anesthesia and in saltwater aquariums and in scuba rebreathers. An idealized system can capture 500 mg per gram, but in practice you only capture around 250mg/g. This outperforms the method in the article but it’s one-shot. There are interesting proposals to use this for direct capture at industrial facilities and to turn the waste material into bricks for building.
The key advantage of this new material appears to be that it can be heated and reused. That would be very valuable in an interior direct air capture use case. Think about filtering the CO2 from an office or a home to get us back to pre-industrial levels indoors.
Buildings with higher people/sqft could already take advantage of indoor co2 scrubbers today.
Just extrapolate.
Extending the current exponential for 20 years, we get into the 500ppm region.
I don't think that's enough to need scrubbers.
If your room has 2 times the open air concentration, and you are concerned if it's 2.0 times or 2.2 times, you should already be dealing with the problem.
From https://www.climate.gov/news-features/understanding-climate/..., the pessimistic projections suggest that we may reach our 700 ppm threshold by roughly 2070; 45 years from now. (The graphs are hard to read precisely)
The 300 ppm offset compared to the outside air is naturally just an arbitrary number, everything up to 1000 ppm (meaning everything up to 580 ppm more than atmospheric levels) is considered "acceptable". That means any increase in CO2 concentration will take an indoor environment which used to be considered "acceptable" and make it cross the threshold into "unacceptable". An indoor environment which would've been at 900 ppm around the industrial revolution (280 ppm) would've crossed the threshold when we surpassed 380 ppm (which was in 1965 according to https://www.statista.com/statistics/1091926/atmospheric-conc...).
let's compare the past 20 years. In 2004, the concentration was ~377 ppm. That's 47 ppm lower than what was in 2024. An indoor environment which was "borderline but acceptable" at 955 ppm CO2 in 2004 would've crossed the arbitrary 1000 ppm threshold by now, and therefore would benefit from a CO2 scrubber. The next 20 years will likely have a higher increase than the past 20 years, so there will be a larger range of currently acceptable indoor environments which will cross the 1000 ppm threshold by 2045.
TL;DR: It's complicated, 20 years is arbitrary, but as CO2 concentrations increase, indoor quality gets worse so indoor environments which were already bad will become worse. 45 years is a more realistic estimate for when your typical good indoor environment will become unacceptable, but it's a gradient.
The hard part is capture and disposal.
Noticeable cognitive impairment starts in the 700-1000ppm range, whereas it is very common for homes to reach 2000-3000ppm, especially when in a closed bedroom.
I monitor my indoor co2, but don't take any action because it's extremely rare to be above 700 or 800. I can only remember a handful of times its reached 1k ppm. And my house should be prime candidate for co2, it was built during the era of "seal all air gaps" but before ERV or HRVs. I also use pressurized co2 to inject co2 into a planted aquarium. And my dogs are terrified of open windows so they are rarely open.
Sounds seriously unlikely. How would this work in practice, at the level of bodily functions?
I have one of those, it blows fresh air in through the bedroom and sucks it back out through the kitchen (loft house, this route prevents food smells from wafting into the bedroom). Aside from just feeling fresh all year, this system also prevents mosquitoes from entering in summer while still allowing air circulation, it automatically bypasses the exchanger at night to provide cool air and it has some pollen filters installed which helps with hay fever.
So great economic return and a bunch of upsides, but it does require space for the exchanger and the ducts throughout the house.
Imagine capturing CO2 to turn it into cement, used for constructions.
Pardon my ignorance, though.
I have no idea why the journalist that wrote this article choose to highlight the carbon density of the sub-header. It's almost completely irrelevant for carbon capture plants.
Another clear benefit is that it's a liquid.
Today people mostly use the substances that you called non-reversible in research plants (AFAIK, all plants are research right now). They are perfectly reversible, but that uses a lot of energy.
It's easy to forget why there is a bit of a challenge to getting C02 out of the air: there's so little of it, comparatively.
In order, air is, broadly, made up of the following:
Nitrogen: %78.084
Oxygen: %20.946
Argon: %00.934
CO2: %00.042
The stuff is essentially beyond a rounding error - it really gives one an appreciation of the "either don't release it, or capture it at the point of release" sentiment, and for the difficulties in making carbon capture outside of these scenarios be even slightly cost-effective.
But guess what, all of those chemicals are extremely valuable, such as nitrates for fertiliser, water, and Argon does really react with anything (it’s a noble gas), which is why we use it as a shield gas in processes like welding.
So producing enough of those gases to somehow offset CO2 production would first require ludicrously large amounts of energy, and if we had access to that amount of clean energy we wouldn’t even be having this discussion. Plus it requires breaking down really valuable chemicals that we spend quite a lot of energy trying to produce or preserve anyway.
Do you really think it's both feasible and a good idea to release so much O2 and N2 to double the mass of the atmosphere? Or even just increase it by 1.5x?
For the record, the atmosphere is around 5 150 000 000 000 000 metric tons. 5 quintillion kilograms. You're talking about producing metric exatons of gas.
1. We've raised CO2 from 280ppm to 420ppm, about a 50% increase. To dilute it back down would require 50% more total atmosphere. This would also raise the surface air pressure 1.5x.
2. How much heat is trapped is related to the absolute amount of CO2 in the atmosphere, not the fraction. So the diluted atmosphere would retain just as much heat.
Plants only filter out very small amounts of CO2 from the air over relatively long timeframes. That's why crop-based biofuels require such enormous amounts of space.
cyphertruck•1h ago
roflmaostc•1h ago
Recent article: https://www.theguardian.com/environment/2025/nov/28/africa-f...
adregan•1h ago
OsrsNeedsf2P•1h ago
adregan•42m ago
What is unsaid is that we need to sequester CO2 for hundreds of years—often far beyond the lifespan of the trees. Trees are short term storage, and sometimes the storage is a lot shorter than popular imagination purports.
xnx•1h ago
gs17•27m ago
cogman10•1h ago
But left out to rot and yeah, the fungus and bacteria will ultimately consume the wood and release CO2 as a byproduct.
dylan604•1h ago
nephihaha•57m ago
fsckboy•36m ago
gus_massa•1h ago
In this case, it looks like they get CO2 as a gas. It's cheaper because you don't have to use energy to undo the burning, but it's difficult to store for a long time.
(I'm not sure if someone tried to make a fake underground bog in abandoned mine. Just fill with wood and water to keep the oxygen low and make the wood decompose slowly.)
cjbenedikt•1h ago
adrianN•55m ago
dheera•1h ago
Not really, forest fires happen and then a few hundred of years of sequestered CO2 gets released back in an instant.
Organic material with oxygen gas floating around is not stable.
Sequestering carbon into the ocean might be a better strategy. Not flammable and not subject to stupid capitalism effects around land prices.
S3verin•1h ago
adammarples•1h ago
yodon•1h ago
Physics rules everything, once you start trying to run at scale.
The density of carbon per unit volume in solid materials of interest doesn't vary that much, whether you sink it in trees or in exotic materials like diamonds. That means you can calculate the volume of material required so sink a desired amount of atmospheric carbon.
If you want to have a measurable impact on the atmosphere, say dialing it back to 1980 CO2 levels, you're talking not about making a pile of stuff but about making a mountain range that's a mile high and hundreds of miles long.
Now figure out how many trucks you're going to need to move that much material from where your sequestering machine is to where your pile of stuff is.
Or if you want to dump that material in the ocean (which someone else will certainly object to), extend your calculation to figure out how many container trucks worth of material you need to dump into the ocean every hour to accomplish your atmospheric cleanup in whatever amount of time you choose (a decade? If it takes a century, that's not fast enough).
And finally think about surface to volume ratios. You're trying to sink it into a volume, but you can only get the gas into the volume through its surface, so the speed of your process is limited by surface area.
If you want to do it with trees, my personal spitball estimates are that you probably need to plant somewhere between the entire state of Connecticut and the entire state of Colorado to have the kind of impact one would want (there's more subtlety to tree calculations than one generally likes to admit, so feel free to come in with way higher numbers than I did).
Which brings us back to economics. If you have a well-managed forest of that size and scale, someone is eventually going to come along, maybe in 100 years, maybe in 500 years, and say "hey if we cut this down, we could burn the wood to heat our homes" and all that carbon goes back into the atmosphere, so you actually need to sink it into something that is energetically unfavorable for recovery, which means you also need to expand a huge amount of energy to sink the carbon into that energetically unfavorable state.
marcosdumay•26m ago
Just to put it into numbers, wikipedia has the total amount of CO2 on the global warming page, if we assume it's in a 2 g/l substance it totals to around 180 km^3.
Yizahi•1h ago
1. Even if we do magic and emit nothing, we still need to remove CO2 from the atmosphere or it will cook us over time, just longer.
2. We would need an enormous area for forests (which i great), which would mean a lot of intervention, like resettling people, demolishing and constructing new buildings, a lot of machinery time to move people to and from the new forests, a lot of planting and forest maintenance involved. And add he work to cut and bury resulting wood. If you would sum all the incidental emissions from this process it would rapidly become much less efficient (if at all).
Without either CO2 capture or a sun shade of some sort, the CO2 levels and temperature will only ever increase, just like now.
jacquesm•31m ago
The largest sous-vide cooking pot ever...