frontpage.
newsnewestaskshowjobs

Made with ♥ by @iamnishanth

Open Source @Github

fp.

Dexterous robotic hands: 2009 – 2014 – 2025

https://old.reddit.com/r/robotics/comments/1qp7z15/dexterous_robotic_hands_2009_2014_2025/
1•gmays•2m ago•0 comments

Interop 2025: A Year of Convergence

https://webkit.org/blog/17808/interop-2025-review/
1•ksec•12m ago•1 comments

JobArena – Human Intuition vs. Artificial Intelligence

https://www.jobarena.ai/
1•84634E1A607A•15m ago•0 comments

Concept Artists Say Generative AI References Only Make Their Jobs Harder

https://thisweekinvideogames.com/feature/concept-artists-in-games-say-generative-ai-references-on...
1•KittenInABox•19m ago•0 comments

Show HN: PaySentry – Open-source control plane for AI agent payments

https://github.com/mkmkkkkk/paysentry
1•mkyang•21m ago•0 comments

Show HN: Moli P2P – An ephemeral, serverless image gallery (Rust and WebRTC)

https://moli-green.is/
1•ShinyaKoyano•31m ago•0 comments

The Crumbling Workflow Moat: Aggregation Theory's Final Chapter

https://twitter.com/nicbstme/status/2019149771706102022
1•SubiculumCode•35m ago•0 comments

Pax Historia – User and AI powered gaming platform

https://www.ycombinator.com/launches/PMu-pax-historia-user-ai-powered-gaming-platform
2•Osiris30•36m ago•0 comments

Show HN: I built a RAG engine to search Singaporean laws

https://github.com/adityaprasad-sudo/Explore-Singapore
1•ambitious_potat•42m ago•0 comments

Scams, Fraud, and Fake Apps: How to Protect Your Money in a Mobile-First Economy

https://blog.afrowallet.co/en_GB/tiers-app/scams-fraud-and-fake-apps-in-africa
1•jonatask•42m ago•0 comments

Porting Doom to My WebAssembly VM

https://irreducible.io/blog/porting-doom-to-wasm/
1•irreducible•42m ago•0 comments

Cognitive Style and Visual Attention in Multimodal Museum Exhibitions

https://www.mdpi.com/2075-5309/15/16/2968
1•rbanffy•44m ago•0 comments

Full-Blown Cross-Assembler in a Bash Script

https://hackaday.com/2026/02/06/full-blown-cross-assembler-in-a-bash-script/
1•grajmanu•49m ago•0 comments

Logic Puzzles: Why the Liar Is the Helpful One

https://blog.szczepan.org/blog/knights-and-knaves/
1•wasabi991011•1h ago•0 comments

Optical Combs Help Radio Telescopes Work Together

https://hackaday.com/2026/02/03/optical-combs-help-radio-telescopes-work-together/
2•toomuchtodo•1h ago•1 comments

Show HN: Myanon – fast, deterministic MySQL dump anonymizer

https://github.com/ppomes/myanon
1•pierrepomes•1h ago•0 comments

The Tao of Programming

http://www.canonical.org/~kragen/tao-of-programming.html
2•alexjplant•1h ago•0 comments

Forcing Rust: How Big Tech Lobbied the Government into a Language Mandate

https://medium.com/@ognian.milanov/forcing-rust-how-big-tech-lobbied-the-government-into-a-langua...
3•akagusu•1h ago•0 comments

PanelBench: We evaluated Cursor's Visual Editor on 89 test cases. 43 fail

https://www.tryinspector.com/blog/code-first-design-tools
2•quentinrl•1h ago•2 comments

Can You Draw Every Flag in PowerPoint? (Part 2) [video]

https://www.youtube.com/watch?v=BztF7MODsKI
1•fgclue•1h ago•0 comments

Show HN: MCP-baepsae – MCP server for iOS Simulator automation

https://github.com/oozoofrog/mcp-baepsae
1•oozoofrog•1h ago•0 comments

Make Trust Irrelevant: A Gamer's Take on Agentic AI Safety

https://github.com/Deso-PK/make-trust-irrelevant
7•DesoPK•1h ago•4 comments

Show HN: Sem – Semantic diffs and patches for Git

https://ataraxy-labs.github.io/sem/
1•rs545837•1h ago•1 comments

Hello world does not compile

https://github.com/anthropics/claudes-c-compiler/issues/1
35•mfiguiere•1h ago•20 comments

Show HN: ZigZag – A Bubble Tea-Inspired TUI Framework for Zig

https://github.com/meszmate/zigzag
3•meszmate•1h ago•0 comments

Metaphor+Metonymy: "To love that well which thou must leave ere long"(Sonnet73)

https://www.huckgutman.com/blog-1/shakespeare-sonnet-73
1•gsf_emergency_6•1h ago•0 comments

Show HN: Django N+1 Queries Checker

https://github.com/richardhapb/django-check
1•richardhapb•1h ago•1 comments

Emacs-tramp-RPC: High-performance TRAMP back end using JSON-RPC instead of shell

https://github.com/ArthurHeymans/emacs-tramp-rpc
1•todsacerdoti•1h ago•0 comments

Protocol Validation with Affine MPST in Rust

https://hibanaworks.dev
1•o8vm•2h ago•1 comments

Female Asian Elephant Calf Born at the Smithsonian National Zoo

https://www.si.edu/newsdesk/releases/female-asian-elephant-calf-born-smithsonians-national-zoo-an...
5•gmays•2h ago•1 comments
Open in hackernews

Lessons from building search for vague, human queries

1•jeffmanu•1w ago
I’ve been building a search system for long form content where the goal isn’t “find the right document,” but more precision.

On paper, it looked straightforward: embeddings, a vector DB, some metadata filters. In reality, the hardest problems weren’t model quality or infrastructure, but how the system behaves when users are vague, data is messy, and most constraints are inferred rather than explicitly stated.

Early versions tried to deeply “understand” the query up front, infer topics and constraints, then apply a tight SQL filter before doing any semantic retrieval. It performed well in demos and failed with real users. One incorrect assumption about topic, intent, or domain didn’t make results worse—it made them disappear. Users do not debug search pipelines; they just leave.

The main unlock was separating retrieval from interpretation. Instead of deciding what exists before searching, the system always retrieves a broad candidate set and uses the interpretation layer to rank, cluster, and explain.

At a high level, the current behavior is:

Candidate retrieval always runs, even when confidence in the interpretation is low.

Inferred constraints (tags, speakers, domains) influence ranking and UI hints, not whether results are allowed to exist.

Hard filters are applied only when users explicitly ask for them (or through clear UI actions).

Ambiguous queries produce multiple ranked options or a clarification step, not an empty state.

The system is now less “certain” about its own understanding but dramatically more reliable, which paradoxically makes it feel more intelligent to people using it.

I’m sharing this because most semantic search discussions focus on models and benchmarks, but the sharpest failure modes I ran into were architectural and product level.

If you’ve shipped retrieval systems that had to survive real users especially hybrid SQL + vector stacks I’d love to hear what broke first for you and how you addressed it.

Comments

TFSFVentures•1d ago
It sounds like you've hit on a common challenge with semantic search systems, especially when moving from controlled environments to real users with vague queries. We've seen this exact scenario before where the architectural and product-level decisions around interpretation and retrieval become far more critical than the underlying models. This usually comes down to how the system handles ambiguity and inferred constraints, often leading to empty states or irrelevant results if not designed carefully. Happy to sanity-check your approach or share insights on how other teams have navigated similar issues with hybrid SQL + vector stacks.