Over the last weeks, PolyMCP has grown into a small ecosystem: • PolyMCP (core) – expose Python functions as MCP tools • PolyMCP Inspector – visual UI to explore, test, and debug MCP servers • PolyMCP MCP SDK Apps – build MCP-powered apps with tools + UI resources
⸻
1) Turn any Python function into an MCP tool
Basic example:
from polymcp import expose_tools_http
def add(a: int, b: int) -> int: """Add two numbers""" return a + b
app = expose_tools_http( tools=[add], title="Math Tools" )
Run it:
uvicorn server_mcp:app --reload
Now add is an MCP-compliant tool that any AI agent can discover and call.
No decorators, no schema files, no agent-specific SDKs.
⸻
2) Real APIs, not toy examples
Existing API code works as-is:
import requests from polymcp import expose_tools_http
def get_weather(city: str): """Return current weather data for a city""" response = requests.get( f"https://api.weatherapi.com/v1/current.json?q={city}" ) return response.json()
app = expose_tools_http([get_weather], title="Weather Tools")
Agents can now call:
get_weather("London")
and receive real-time data.
⸻
3) Business & internal workflows
Example: internal reporting logic reused directly by agents.
import pandas as pd from polymcp import expose_tools_http
def calculate_commissions(sales_data: list[dict]): """Calculate sales commissions from sales data""" df = pd.DataFrame(sales_data) df["commission"] = df["sales_amount"] * 0.05 return df.to_dict(orient="records")
app = expose_tools_http([calculate_commissions], title="Business Tools")
No rewriting legacy logic.
4) PolyMCP Inspector (visual debugging)
To make MCP development usable in practice, I added PolyMCP Inspector: • Visual UI to browse tools, prompts, and resources • Call MCP tools interactively • Inspect schemas, inputs, outputs, and errors • Multi-server support (HTTP + stdio) • Built-in chat playground (OpenAI / Anthropic / Ollama)
Think “Postman + DevTools” for MCP servers.
Repo: https://github.com/poly-mcp/PolyMCP-Inspector
⸻
5) MCP SDK Apps (tools + UI)
The latest addition is PolyMCP MCP SDK Apps: • Build MCP apps, not just tools • Expose: • tools • UI resources (HTML/JS dashboards) • app-level workflows • Let agents interact with both tools and UIs
This is useful for: • internal copilots • ops dashboards • support tools • enterprise AI frontends
Repo: https://github.com/poly-mcp/PolyMCP-MCP-SDK-Apps
⸻
Why this matters (especially for companies) • Reuse existing code immediately (scripts, APIs, internal libs) • Standard MCP interface instead of vendor-specific agent SDKs • Multiple tools, one server • Agent-driven orchestration, not hardcoded flows • Faster AI adoption without refactoring everything
PolyMCP treats AI agents as clients of your software, not magic wrappers around it.
⸻
Repos • Core framework: https://github.com/poly-mcp/PolyMCP • Inspector UI: https://github.com/poly-mcp/PolyMCP-Inspector • MCP SDK Apps: https://github.com/poly-mcp/PolyMCP-MCP-SDK-Apps
Happy to hear feedback from people building MCP servers, agents, or internal AI tools.