frontpage.
newsnewestaskshowjobs

Made with ♥ by @iamnishanth

Open Source @Github

fp.

We Mourn Our Craft

https://nolanlawson.com/2026/02/07/we-mourn-our-craft/
180•ColinWright•1h ago•164 comments

I Write Games in C (yes, C)

https://jonathanwhiting.com/writing/blog/games_in_c/
22•valyala•2h ago•7 comments

Hoot: Scheme on WebAssembly

https://www.spritely.institute/hoot/
124•AlexeyBrin•7h ago•24 comments

SectorC: A C Compiler in 512 bytes

https://xorvoid.com/sectorc.html
17•valyala•2h ago•1 comments

Stories from 25 Years of Software Development

https://susam.net/twenty-five-years-of-computing.html
65•vinhnx•5h ago•9 comments

U.S. Jobs Disappear at Fastest January Pace Since Great Recession

https://www.forbes.com/sites/mikestunson/2026/02/05/us-jobs-disappear-at-fastest-january-pace-sin...
155•alephnerd•2h ago•105 comments

OpenCiv3: Open-source, cross-platform reimagining of Civilization III

https://openciv3.org/
833•klaussilveira•22h ago•250 comments

The AI boom is causing shortages everywhere else

https://www.washingtonpost.com/technology/2026/02/07/ai-spending-economy-shortages/
119•1vuio0pswjnm7•8h ago•148 comments

Al Lowe on model trains, funny deaths and working with Disney

https://spillhistorie.no/2026/02/06/interview-with-sierra-veteran-al-lowe/
57•thelok•4h ago•8 comments

The Waymo World Model

https://waymo.com/blog/2026/02/the-waymo-world-model-a-new-frontier-for-autonomous-driving-simula...
1060•xnx•1d ago•612 comments

Reinforcement Learning from Human Feedback

https://rlhfbook.com/
79•onurkanbkrc•7h ago•5 comments

Brookhaven Lab's RHIC Concludes 25-Year Run with Final Collisions

https://www.hpcwire.com/off-the-wire/brookhaven-labs-rhic-concludes-25-year-run-with-final-collis...
4•gnufx•56m ago•1 comments

Start all of your commands with a comma (2009)

https://rhodesmill.org/brandon/2009/commands-with-comma/
487•theblazehen•3d ago•177 comments

Vocal Guide – belt sing without killing yourself

https://jesperordrup.github.io/vocal-guide/
212•jesperordrup•12h ago•72 comments

France's homegrown open source online office suite

https://github.com/suitenumerique
567•nar001•6h ago•259 comments

Coding agents have replaced every framework I used

https://blog.alaindichiappari.dev/p/software-engineering-is-back
226•alainrk•6h ago•354 comments

A Fresh Look at IBM 3270 Information Display System

https://www.rs-online.com/designspark/a-fresh-look-at-ibm-3270-information-display-system
40•rbanffy•4d ago•7 comments

Show HN: I saw this cool navigation reveal, so I made a simple HTML+CSS version

https://github.com/Momciloo/fun-with-clip-path
9•momciloo•2h ago•0 comments

History and Timeline of the Proco Rat Pedal (2021)

https://web.archive.org/web/20211030011207/https://thejhsshow.com/articles/history-and-timeline-o...
19•brudgers•5d ago•4 comments

Selection Rather Than Prediction

https://voratiq.com/blog/selection-rather-than-prediction/
8•languid-photic•3d ago•1 comments

72M Points of Interest

https://tech.marksblogg.com/overture-places-pois.html
29•marklit•5d ago•3 comments

Unseen Footage of Atari Battlezone Arcade Cabinet Production

https://arcadeblogger.com/2026/02/02/unseen-footage-of-atari-battlezone-cabinet-production/
114•videotopia•4d ago•33 comments

Where did all the starships go?

https://www.datawrapper.de/blog/science-fiction-decline
77•speckx•4d ago•82 comments

Show HN: Look Ma, No Linux: Shell, App Installer, Vi, Cc on ESP32-S3 / BreezyBox

https://github.com/valdanylchuk/breezydemo
274•isitcontent•22h ago•38 comments

Learning from context is harder than we thought

https://hy.tencent.com/research/100025?langVersion=en
201•limoce•4d ago•112 comments

Monty: A minimal, secure Python interpreter written in Rust for use by AI

https://github.com/pydantic/monty
287•dmpetrov•22h ago•155 comments

Show HN: Kappal – CLI to Run Docker Compose YML on Kubernetes for Local Dev

https://github.com/sandys/kappal
22•sandGorgon•2d ago•12 comments

Hackers (1995) Animated Experience

https://hackers-1995.vercel.app/
557•todsacerdoti•1d ago•269 comments

Making geo joins faster with H3 indexes

https://floedb.ai/blog/how-we-made-geo-joins-400-faster-with-h3-indexes
155•matheusalmeida•2d ago•48 comments

Sheldon Brown's Bicycle Technical Info

https://www.sheldonbrown.com/
427•ostacke•1d ago•111 comments
Open in hackernews

Fine-tuned small LLMs can beat large ones with programmatic data curation

https://www.tensorzero.com/blog/fine-tuned-small-llms-can-beat-large-ones-at-5-30x-lower-cost-with-programmatic-data-curation/
53•GabrielBianconi•6mo ago

Comments

alchemist1e9•6mo ago
I’ve been thinking about curating primary sources themselves and then using those for fine-tuning.

Anyone gone that route and know of projects with very high quality curated source materials? ideally categorized and labeled.

k8si•6mo ago
Maybe this is a nitpick but CoNLL NER is not a "challenging task". Even pre-LLM systems were getting >90 F1 on that as far back as 2016.

Also, just in case people want to lit review further on this topic: they call their method "programmatic data curation" but I believe this approach is also called model distillation and/or student-teacher training.

GabrielBianconi•6mo ago
Thanks for the feedback!

We chose a set of tasks with different levels of complexity to see how this approach would scale. For LLMs, the "challenge" with NER is not the task itself but the arbitrariness of the labels in the dataset. I agree it's still much simpler than the other tasks we present (agentic RAG, agentic tool use, maze navigation).

There are definitely strong parallels to model distillation and student-teacher training, with the primary difference being that we don't simply take all the data from the larger model but rather filter the dataset based on metrics from the environment. In the "Does curation even matter?" section, we show that this generally improves the result by a good margin.

We link to Vicuna, which might be the closest reference as prior art: https://lmsys.org/blog/2023-03-30-vicuna/

Thanks!

mwigdahl•6mo ago
Is this just distillation but with a step to filter out low-quality responses first?
GabrielBianconi•6mo ago
AFAIK, distillation typically refers to tuning on the logits of the larger model, so you wouldn't be able to do that with fine-tuning APIs (OpenAI + Google in our blog post). We fine-tune on the outputs themselves.

But broadly speaking, yes, we generate data using a large model, curate the best samples using metrics from the environment, and fine-tune on that data. This isn't a novel technique from an academic perspective; our focus is on applying it to different use cases (e.g. agentic RAG, agentic tool use) and models (OpenAI, Google, Qwen).

Thanks!

mwigdahl•6mo ago
Thanks for the explanation and the clarification on terminology! I've used a similar approach myself and it sounded like you were doing something similar.
littlestymaar•6mo ago
> AFAIK, distillation typically refers to tuning on the logits of the larger model

I think this is called “logit distillation” which is a particular form of distillation but not the only one.

> so you wouldn't be able to do that with fine-tuning APIs (OpenAI + Google in our blog post)

Dististillation from competitors' API is so common it has been given a name: it's called “distealing”.

6510•6mo ago
Noob question: Would it be possible to train a small model for a single prompt?
GabrielBianconi•6mo ago
With supervised fine-tuning (SFT), you'll often see good results with 100-1000+ datapoints (they can be variations of the same prompt template). If you have more limited data, reinforcement fine-tuning (RFT) can work well in the 10-100 range.

Good luck!

simianwords•6mo ago
I think its a good idea but how do you not accidentally benchmark hack here?
GabrielBianconi•6mo ago
We set up dataset splits and the usual best practices. Of course, if you overdo things, you can still hack benchmarks; our goal isn't to publish SOTA numbers but rather to illustrate results from our methodology. We didn't even tune hyperparameters, we just used the default choices. Definitely a valid concern for teams chasing SOTA though.

Thanks!