Because I want to be able to review it, and extend it myself.
edit: Pure vibe coding is a joke or thought exercise, not a goal to aspire to. Do you want to depend on a product that has not been vetted by any human? And if it is your product, do you want the risk of selling it?
I can imagine a future where AI coders and AI QA bots do all the work but we are not there yet. Besides, an expressive language with safety features is good for bots too.
I'm getting too old for this shit.
Without checks and feedback, LLMs can easily generate unsafe code. So even if they can generate C or Assembly that works, they’re likely to produce code that’s riddled with incorrect edge cases, memory leaks, and so on.
Also, abstraction isn’t only for humans; it’s also for LLMs. Sure, they might benefit from different kinds of abstraction - but that doesn’t mean “oh, just write machine code” is the way to go.
https://cacm.acm.org/research/automatically-translating-c-to...
If LLMs produce code riddled with bugs in one language it will do in other languages as well. Rust isn't going to save you.
Like everything around Rust, this has been discussed ad nauseam.
Preventing memory safety bugs has a meaningful impact in reducing CVEs, even if it has no impact on logic bugs. (Which: I think you could argue the flexible and expressive type system helps with. But for the sake of this argument, let's say it provides no benefits.)
If the only concern is "can an LLM write code in this language without memory errors" then there's plenty of reasons to choose a language other than Rust.
First, Rust has lots of checks that C and assembly don't, and AI benefits from those checks. Then, a post about those checks are related to memory safety, not logic errors. Then, a post about whether that's a helpful comment. Finally, me pointing out that checks regarding types and memory errors aren't unique to Rust and there's tons of languages that could benefit.
Since you want to bring it back to the original article, here's a quote from the author:
Is C the ideal language for vibe coding? I think I could mount an argument for why it is not, but surely Rust is even less ideal. To say nothing of Haskell, or OCaml, or even Python. All of these languages, after all, are for people to read, and only incidentally for machines to execute.
It would seem that the author fundamentally misunderstand significant reasons for many of the languages he mentions to be the way that they are.Sure, but it prevents memory safety issues, which C doesn't. As for logic bugs, what does prevent them? That's a bigger question but I'd suggest it's:
1. The ability to model your problem in a way that can be "checked". This is usually done via type systems, and Rust has an arguably good type system for this.
2. Tests that allow you to model your problem in terms of assertions. Rust has decent testing tooling but it's not amazing, and I think this is actually a strike against Rust to a degree. That said, proptest, fuzzing, debug assertions, etc, are all present and available for Rust developers.
There are other options like using external modeling tools like TLA+ but those are decoupled from your language, all you can ever do is prove that your algorithm as specified is correct, not the code you wrote - type systems are a better tool to some degree in that way.
I think that if you were to ask an LLM to write very correct code then give two languages, one with a powerful, express type system and testing utilities, and one without those, then the LLM would be far more likely to produce buggy code in the system without those features.
There are static tools available for C as well. What you get from Rust mostly is that the check is part of the syntax of the language as well and escaping from it is very visible. You get safety, but you give up flexibility and speed.
Modern sewers sometimes back up, so might as well just releive yourself in a bucket and dump it into your sidewalk.
Modern food preservation doesn't prevent all spoilage so you might as well just go back to hoping that meat hasn't been sitting in the sun for too many days.
You can't get a gutter ball if you put up the rails in a bowling lane. Rust's memory safety is the rails here.
You might get different "bad code" from AI, but if it can self-validate that some code it spits out has memory management issues at compile time, it helps the development. Same as with a human.
It makes me imagine a programming language designed for LLMs but not humans, designed for rigorous specification of every function, variable, type, etc., valid inputs and outputs, tightly coupled to unit tests, mandatory explicit handling of every exception, etc.
Maybe it'll look like a lot of boilerplate but make it easy to read as opposed to easy to write.
The idea of a language that is extremely high-effort to write, but massively assists in guaranteeing correctness, could be ideal for LLM's.
No, it absolutely doesn't. We've seen so much vibe coded slop that it's very clear that vibe coding produces a hot mess which no self respecting person would call acceptable. No idea how you can say this as it isn't remotely true.
The two recent IT catastrophes [0] from Alaska Airlines will continue elsewhere.
[0] https://www.seattletimes.com/business/alaska-airlines/alaska...
I was really hoping you were going to make this argument, based upon the title of the piece! Still a good read, but if you have the inclination I hope you loop back around to weighing the pros and cons of vibe coding in different languages
That has not been my experience when using Codex, Composer, Claude, or ChatGPT.
Things have just gotten to the point over the last year that the undefined behavior, memory safety, and thread safety violations are subtler and not as blindingly obvious to the person auditing the code.
But I guess that's my problem, because I'm not fully vibing it out.
As to why not use C, or assembly, it’s not just about the code, but the toolchains. These require way more knowledge and experience to get something working than, say, Python - although that has its own rather horrible complexities with packaging and portability on the back end of the code authoring process.
A legitimate point, there are lots of performance and fine grain changes you can make, and it's a simple, common language many people use. Perhaps we could realize some of these benefits from a simple, fast language.
> Or hell, why not do it in x86 assembly?
A terrible take imo. This would be impossible to debug and it's complex enough you likely won't see any performance improvements from writing in assembly. It's also not portable, meaning you'd have to rewrite it for every OS you want to compile on.
I think there's an argument that if machines are writing code, they should write for a machine optimized language. But even using this logic I don't want to spend a bunch of time and money writing multiple architectures, or debugging assembly when things go wrong.
Debugging machine code is only bad because of poor tooling. Surely if vibe coding to machine code works we should be able to vibe code better debuggers. Portability is a non issue because the llm would have full semantic knowledge of the problem and would generate optimal, or at least nearly optimal, machine code for any known machine. This would be better, faster and cheaper than having the llm target an intermediate language, like c or rust. Moreover, they would have the ability to self-debug and fix their own bugs with minimal to no human intervention.
I don't think there is widespread understanding of how bloated and inefficient most real world compilers (and build systems) are, burning huge amounts of unnecessary energy to translate high level code, written by humans who have their own energy requirements, to machine code. It seems highly plausible to me that better llms could generate better machine code for less total energy expenditure (and in theory cost) than the human + compiler pair.
Of course I do not believe that any of the existing models are capable of doing this today, but I do not have enough expertise to make any claims for or against the possibility that the models can reach this level.
But code doesn’t only need to be understood for maintenance purposes: code is documentation for business processes. It’s a thing that needs to be understandable and explainable by humans anytime the business process is important.
LLMs can never / should never replace verifiability, liability, or value judgment.
We've not really seen what impact this will have just yet.
It produces hot garbage when it needs to bring together two tokens from the far ends of a large code base together.
This comes as no surprise to anyone who understands what the attention mechanism actually is, and as a great surprise to everyone who thinks transformers are AI magic.
> But this leads me to my second point, which I must make as clearly and forcefully as I can. Vibe coding actually works. It creates robust, complex systems that work. You can tell yourself (as I did) that it can’t possibly do that, but you are wrong. You can then tell yourself (as I did) that it’s good as a kind of alternative search engine for coding problems, but not much else. You are also wrong about that. Because when you start giving it little programming problems that you can’t be arsed to work out yourself (as I did), you discover (as I did) that it’s awfully good at those. And then one day you muse out loud (as I did) to an AI model something like, “I have an idea for a program…” And you are astounded. If you aren’t astounded, you either haven’t actually done it or you are at some stage of grief prior to acceptance. Perfect? Hardly. But then neither are human coders. The future? I think the questions answers itself.
This cannot be repeated enough. For all the AI hype, if you think AI isn't the most useful programming tool invented in the last 20 years, you're ignorant of the SOTA or deeply in denial.
As @tptacek recently wrote:
> All progress on LLMs could halt today, and LLMs would remain the 2nd most important thing to happen over the course of my career.
Do you have any examples of these? All the vibe coded systems I've seen so far were very far from robust.
edit: it was a real request, I was being interested, not some mockery or idk
After having understood the context, I still believe that a strongly typed language would be a much better choice of a language, for exactly the same reason why I wouldn't recommend starting a project in C unless there is a strong preference (and even then Rust would probably be better still).
LLMs are not perfect, just like humans, so I would never vibe code in any other environment than one in which many/most logical errors are by definition impossible to compile.
Not sure if C is worse than python/js in that respect (I'd argue it is better for some and worse for other, regarding safety) but Java, Swift, C#, Go, Rust, etc. are great languages for vibe coding since you have the compiler giving you almost instant feedback on how well your vibe coding is going.
I wouldn't trust it to reliably write safe C though. It works in Rust because there's meaning embedded into the types that are checked by the compiler that gives it feedback when it makes mistakes. But you don't get that in C.
I would appreciate a post with examples, not just prose. It helps to put things in a more grounded reality.
A) I barely get to do any coding these days anyways
B) Reading code is harder than writing it (and thus, easier to gloss over), and by the time I'm ready to write code I've already done all the hard work (I.E. even if vibe coding made me 50% faster, it's 50% of 5% of the overall software development life cycle in this more senior role)
C) I've never even copied code from Stack Overflow into my editor (maybe once or twice in a couple decades), I always type things myself because it literally forces you to walk through character by character in a field where changing one character can easily lead to 8 hour bug hunts
D) There's probably not much world where I can't ramp up fairly quickly on how to prompt well
E) It seems to me everyone is spending all their time comparing model X with model Y, creating prompt context files, running multiple agents in parallel... if the purported gains are to occur, eventually we should have tools that require less of all that, and I can just use those later tools when they're around instead of learning a bunch of stuff that will naturally be useless (This is like if you became a Backbone JS expert and were left stunned when people started using React)
F) And if those gains don't occur (and the gains certainly seem to be leveling off quick, the comments today look much like the comments a few years ago, and I've really not seen much one way or the other when comparing a variety of coworkers in terms of productivity beyond POCs, and the starts of small scope green field projects (although, those can be accomplished by non technical people in some instances which is neat)) then... well... I guess I'll just keep doing what I've been doing for the last couple decades, but I won't have wasted a bunch of time learning how to prompt Grok vs Copilot vs ChatGPT or what ever and I'll still have tons of information in my head about how everything works
I think strong static typing probably? Which is, well, not javascript in fact! (And I have bucked the trend on this previously, liking ruby -- but I'm not sure I'd want AI-generated code without it?)
My experience with LLMs is that they are not good at tracking resources and perform much better with languages that reduce cognitive load for humans.
Clojure generation is also very solid. Gemini Pro 2.5/3 is fantastic at it.
A part of me wonders if that is because these languages primarily have senior devs writing code, so the entire training set is "good" code.
When I would explore Elixir forums with much larger communities there'd be myriad base level questions with code blocks written as if Elixir and Ruby were interchangable cause the syntax looks similar and thus missing out on many of the benefits of OTP.
But when you'd go to the Erlang community to ask a question, half the time the author of the book or library was one of the like... 20 people online at any given moment, and they'd respond directly. The quality of the discussions was of course much deeper and substantial much more consistently.
I have not tried to generate Elixir vs Erlang code but maybe it'd be a neat experiment to see if the quality seems better with Erlang
In my work, the bigger bottleneck to productivity is that very few people can correctly articulate requirements. I work in backend, API development, which is completely different from fullstack development with backend development. If you ask PMs about backend requirements, they will dodge you, and if you ask front-end or web developers, they are waiting for you to provide them the API. The hardest part is understanding the requirements. It's not because of illiteracy. It's because software development is a lot more than coding and requires critical thinking to discover the requirements.
this already exists.
This is how most non-technical stakeholders feel when you probe for consistent, thorough requirements and a key professional skill for many more senior developers and consultants is in mastering the soft skills that keep them attentive and sufficiently helpful. Those skills are not generic sycophancy, but involve personal attunement to the stakeholder, patience (exercising and engendering), and cycling the right balance between persistence and de-escalation.
Or do you just mean there will be some PM who acts as proxy between for the stakeholder on the ticket, but still needs to get them onto the phone and into meetings so the answers can be secured?
Because in the real world, the prior is outlandish and the latter doesn't gain much.
It can make a vague ticket precise and that can be an easy platform to have discussions with stakeholders.
Thank you for sharing this workflow. I have low tolerance for LLM written text, but this seems like a really good use case.
A) as stated by parent comment, the ones doing req. mngmt. Are doing a poor job of abstracting the requirements, and what could be done as one feature suddenly turns in 25.
B) in a similar manner as A, all solutions imply writing more and more code, and never refactor and abstract parts away.
When you start getting down into the weeds, there can be tons and tons of little details around state maintenance, accessibility, edge cases, failure modes, alternate operation modes etc.
That all combines to make lots of code that is highly interconnected, so you need to write even more code to test it. Sometimes much more than even the target implementations code.
People have been trying to separate the technical from the requirements angle for a long time and that is a big reason why startups can overtake large companies. You can do it, its just slow and inefficient.
Most software products built that way seem to move fast at first but become monstrous abominations over time. If those are the only places you keep finding yourself in, be careful!
souce: been there, done some of that.
I find the LLMs boost my productivity because I've always had a sort of architectural mindset, I love looking up projects that solve specific problems and keeping them on the back of my mind, turns out I was building myself up for instructing LLMs on how to build me software, and it takes several months worth of effort and spits it out in a few hours.
Speaking of vibe coding in archaic languages, I'm using LLMs to understand old Shockwave Lingo to translate it to a more modern language, so I can rebuild a legacy game in a modern language. Maybe once I spin up my blog again I'll start documenting that fun journey.
- SSL 2.0-TLS 1.1, HTTP/0.9-HTTP/1.1, ftp, WAIS, gopher, finger, telnet, rwho, TinyFugue MUD, UUCP email, SHOUTcast streaming some public domain radio whatever
- <blink>, <marquee>, <object>, XHTML, SGML
- Java <applet>, Java Web Start
- MSJVM/J++, ActiveX, Silverlight
- Flash, Shockwave (of course), Adobe Air
- (Cosmo) VRML
- Joke ActiveX control or toolbar that turns a Win 9x/NT-XP box into a "real" ProgressBar95. ;)
(Gov't mandated PSA: Run vintage {good,bad}ness with care.)
> How do I express this code in Typescript?
it's
> What is the best way to express this idea in a way that won't confuse or anger our users? Where in the library should I put this new idea? Upstream of X? Downstream of Y? How do I make it flexible so they can choose how to integrate this? Or maybe I don't want to make it flexible - maybe I want to force them to use this new format?
> Plus making sure that whatever changes I make are non-breaking, which means that if I update some function with new parameters, they need to be made optional, so now I need to remember, downstream, that this particular argument may or may not be `undefined` because I don't want to break implementations from customers who just upgraded the most recent minor or patch version
The majority of the problems I solve are philosophical, not linguistic
Even if you don't let it author or write a single line of code, from collecting information, inspecting code, reviewing requirements, reviewing PRs, finding bugs, hell even researching information online, there's so many things it does well and fast that if you're not leveraging it, you're either in denial or have ai skill issues period.
Even if you limit your AI experience to finding information online through deep research it's such a time saver and productivity booster that makes a lot of difference.
The list of things it can do for you is massive, even if you don't have it write a single line of code.
Yet the counter argument is like "bu..but..my colleague is pushing slop and it's not good at writing code for me", come on, then use it at things it's good at, not things you don't find it satisfactory.
As a Professor of English who teaches programming to humanities students, the writer has had an extremely interesting and unusual academic career [1]. He sounds awesome, but I think it's fair to suggest he may not have much experience of large scale commercial software development or be particularly well placed to predict what will or will not work in that environment. (Not that he necessarily claims to, but it's implicit in strong predictions about what the "future of programming" will be.)
Unless it's an existing project where migration is too costly, C is just entering a time wasting pact along with a lot of other people that like suffering for free.
But if you want a "citation needed" name of someone shipping vibe coded apps and making money off it: on YouTube, Ed Yonge, or many of the guests on Starter Story.
Whether those are substantial enough to count as shipped projects is a matter of debate
No it doesn't. Just for the fun of it because I'm somewhat familiar with the VLC codebase I tried to fix some bugs with "agentic tooling" and "vibe coding". And it just produces crap. Which is one metric I'd propose for the usefulness of these tools, why aren't they fixing real bugs in the large open source codebases of this world? You'd be a hero, VLC has like 4000 open issues.
The answer is of course because these tools, in particular in manual memory managed languages which the author proposes to use, don't work at all. Maybe they work on a toy project of 500 lines of code, which is all every demo ever produces, but these text based systems have no actual understanding of the hardware underlying a complex program. That's just not how they work.
Both the author and I agree in that yes, it can.
Does it always generate good code?
Here is where the author and I disagree vehemently. The author implies that the ai-generated code is always correct. My personal experience is that it often isn't. Not even for big projects - for small bugfixes it also misunderstands and hallucinates solutions.
So no C or assembly for me, thank you very much.
Going forwards, when LLMs / coding tools are able to learn new languages, then languages designed for machines vs humans certainly makes sense.
Languages designed for robust error detection and checking, etc. Prefer verbosity where it adds information rather than succintness. Static typing vs dynamic. Contractual specification of function input/output guarantees. Modular/localized design.
It's largely the same considerations that make a language good for large team, large code base projects, opposite end of the spectrum to scripting languages, except that if it's machine generated you can really go to town on adding as much verbosity is needed to tighten the specification and catch bugs at compile time vs runtime.
Then show us this robust, complex code that was produced by vibe coding and let us judge for ourselves.
Alternatively, use a language like ZL that embeds C/C++ in a macro-supporting, high-level language (eg Scheme). Encode higher level concepts in it with generation of human-readable, low-level code. F* did this. Now, you get C with higher-level features we can train AI's on
If an LLM is in fact capable of generating code free of memory safety errors, then it's certainly also capable of writing the Rust types that guarantee this and are checkable. We could go even further and have automated generation of proofs, either in C using tools similar to CompCert, or perhaps something like ATS2. The reason we don't do these at scale is that they're tedious and verbose, and that's presumably something AI can solve.
Similar points were also made in Martin Kleppmann's recent blog post [1].
[1]: https://martin.kleppmann.com/2025/12/08/ai-formal-verificati...
In order to prove lack of UB, you have to be able to reason about other things. For example, to safely call qsort, you have to prove that the comparison is a total order. That's not easy, especially if comparing larger and more complicated structures with pointers.
And of course, proving the lack of pointer aliasing in C is extremely difficult, even more so if pointer arithmetic is employed.
I'm planning to, why bother with react when I can jump straight into WASM?
ya filthy animal!
But then again LLMs in their current form are trained on mountains of human language so maybe having them output human readable code makes sense at least for now
Well, because you can do it in Fortran, of course!
What else do you want? Multidimensional arrays out of the box, fast loops, native cuda support, trivial build and packaging system, zero version churning... all of this just with the bare language. It's the anti-python! The perfect language, you could say! Strings and i/o are a bit cumbersome, agreed, but your llm can take care of these without any trouble.
Vibe-coding a program that segfaults and you don't know why and you keep burning compute on that? Doesn't seem like a great idea.
>Is C the ideal language for vibe coding? I think I could mount an argument for why it is not, but surely Rust is even less ideal.
I've been using Rust with LLMs for a long time (mid-2023?) now; cargo check and the cargo package system make it very easy for LLMs to check their work and produce high quality code that almost never breaks, and always compiles.
I propose WASM, or an updated version of it
People are still confusing AI putting together scraps of text it has seen that correlates with its understanding of the input, with the idea that AI understands causation, and provides actual answers.
On the other hand, I've enjoyed vibe coding Rust more, because I'm interested in Rust and felt like my understanding approved along they way as I saw what code was produced.
A lot of coding "talent" isn't skill with the language, it's learning all the particularities of the dependencies: The details of the Smithay package in Rust, the complex set of GTK modules or the Wayland protocol implementation.
On a good day, AI can help navigate all that "book knowledge" faster.
I highly recommend people learn how to write their own agents. Its really not that hard. You can do it with any llm model, even ones that run locally.
I.e you can automate things like checking for memory freeing.
Recently I've been preparing a series that teaches how to use AI to assist with coding, and in preparation for that there's this thing I've coded several times in several different languages. In the process of that, I've observed something that's frankly bizarre: I get a 100% different experience doing it in Python vs C#. In C#, the agent gets tripped up in doing all kinds of infrastructure and overengineering blind alleys. But it doesn't do that when I use Python, Go, or Elixir.
My theory is that there are certain habits and patterns that the agents engage with that are influenced by the ecosystem, and the code that it typically reads in those languages. This can have a big impact on whether you're achieving your goals with the activity, either positive or negative.
I lost a day chasing my tail cycling through those 4 approaches, but the experience was worthwhile (IMO) because I had beeen becoming lazy and relying on AI too much, after that I switched to a better style of using AI to help me find those approaches, and as a sounding board for my ideas, whilst staying in control of the actual code.
(Oh, I should also mention that AI's conviction/confidence did cause me to believe it knew what it was talking about when I should have backed myself, but, again, experience is what you get after you needed it :)
I do vibe code in C; I'm not a C programmer and I certainly couldn't do a security audit of any serious C codebase, but I can read and understand a simple C program, and debug and refactor it (as long as it's still quite simple).
And it's super fun! Being able to compile a little C utility that lives in the Windows tray and has a menu, etc. is exhilarating.
But I couldn't do that in assembly; I would just stare at instructions and not understand anything. So, yes for C, no for assembly.
auntienomen•2h ago
bigstrat2003•2h ago
auntienomen•2h ago