The flourinert tank has a ball valve, like a toilet cistern. we hung a plastic lobster in ours, because we called the cray "Yabbie" (Queensland freshwater crayfish)
That re-generator, the circuit breakers are .. touchy. the installation engineer nearly wet his trousers flipping on, the spark-bang was immense. Brown trouser moment.
The front end access was Unisys X11 Unix terminals. They were built like a brick shithouse (to use the australianism) but were a nice machine. I did the acceptance testing, it included running up X11 and compiling and running the largest Conways game of life design I could find on the net. Seemed to run well.
We got the machine as a tax-offset for a large Boeing purchase by Australian defence. End of life, one of the operators got the love-seat and turned it into a wardrobe in his bedroom.
Another, more boring cray got installed at department of primary industries (Qld government) to do crops and weather modelling. The post cray-1 stuff was .. more ordinary. Circular compute unit was a moment in time.
(I think I've posted most of this to HN before)
Aerospace originally did that to reduce component size, CDC and IBM took advantage of the standard in the early 60's.
Strangely, it seems mainframes didn't adopt switching power supplies until the end of the 70's, despite the tech being around since the end of the 60's.
Another rationale may have been that the flywheel on the motor-generator would cover a multitude of power-quality sins.
Thoughts:
1. To block some sunlight from getting in.
2. It’s a secure facility and wanted to prevent people from looking in.
3. To not have to look at something outside.
4. It’s a secure facility and wanted to prevent the chance of taking a picture of someone or something outside that could compromise the location of the computer or someone’s identity; sometimes the first place a photogenic computer was built was at a customer site.
LordGrey•3d ago
> The Cray Research, Inc. CRAY-1 Computer System is a large-scale, general-purpose digital computer featuring vector as well as scalar processing, a 12.5 nanosecond clock period, and a 50 nanosecond memory cycle time. The CRAY-1 is capable of executing over 80 million floating point operations per second.
twoodfin•1h ago
That’s 20 years or about 10,000X the available VLSI transistors via Moore’s Law.
fnord77•1h ago
twoodfin•55m ago
firecall•59m ago
Sometimes I like to remind myself we are living in the future. A future that seemed like SciFi when I was a kid in the 70s!
Sadly I don’t think we will ever see Warp Drives, Time Travel or World Peace. But we might get Jet Packs!
FridayoLeary•35m ago
hypersoar•21m ago
"The 160 MFLOPS Cray-1 was succeeded in 1982 by the 800 MFLOPS Cray X-MP, the first Cray multi-processing computer. In 1985, the very advanced Cray-2, capable of 1.9 GFLOPS peak performance
...
By comparison, the processor in a typical 2013 smart device, such as a Google Nexus 10 or HTC One, performs at roughly 1 GFLOPS,[6] while the A13 processor in a 2019 iPhone 11 performs at 154.9 GFLOPS,[7] a mark supercomputers succeeding the Cray-1 would not reach until 1994."
wmoxam•11m ago