> Fast mode usage is billed directly to extra usage, even if you have remaining usage on your plan. This means fast mode tokens do not count against your plan’s included usage and are charged at the fast mode rate from the first token.
I can't imagine how quickly this Fast Mode goes through credit.
Obviously they can't make promises but I'd still like a rough indication of how much this might improve the speed of responses.
I’m not in favor of the ad model chatgpt proposes. But business models like these suffer from similar traps.
If it works for them, then the logical next step is to convert more to use fast mode. Which naturally means to slow things down for those that didn’t pick/pay for fast mode.
We’ve seen it with iPhones being slowed down to make the newer model seem faster.
Not saying it’ll happen. I love Claude. But these business models almost always invite dark patterns in order to move the bottom line.
> Fast mode usage is billed directly to extra usage, even if you have remaining usage on your plan. This means fast mode tokens do not count against your plan’s included usage and are charged at the fast mode rate from the first token.
Although if you visit the Usage screen right now, there's a deal you can claim for $50 free extra usage this month.
Also wondering whether we’ll soon see separate “speed” vs “cleverness” pricing on other LLM providers too.
Let me guess. Quantization?
> codex-5.2 is really amazing but using it from my personal and not work account over the weekend taught me some user empathy lol it’s a bit slow
Why does this seem unlikely? I have no doubt they are optimizing all the time, including inference speed, but why could this particular lever not entirely be driven by skipping the queue? It's an easy way to generate more money.
Mathematically it comes from the fact that this transformer block is this parallel algorithm. If you batch harder, increase parallelism, you can get higher tokens/s. But you get less throughput. Simultaneously there is also this dial that you can speculatively decode harder with fewer users.
Its true for basically all hardware and most models. You can draw this Pareto curve of how much throughput per GPU vs how many tokens per second per stream. More tokens/s less total throughput.
See this graph for actual numbers:
Token Throughput per GPU vs. Interactivity gpt-oss 120B • FP4 • 1K / 8K • Source: SemiAnalysis InferenceMAX™
Is the writing on the wall for $100-$200/mo users that, it's basically known-subsidized for now and $400/mo+ is coming sooner than we think?
Are they getting us all hooked and then going to raise it in the future, or will inference prices go down to offset?
Is this wrong?
> Fast mode usage is billed directly to extra usage, even if you have remaining usage on your plan. This means fast mode tokens do not count against your plan’s included usage and are charged at the fast mode rate from the first token.
The deadline piece is really interesting. I suppose there’s a lot of people now who are basically limited by how fast their agents can run and on very aggressive timelines with funders breathing down their necks?
- Long running autonomous agents and background tasks use regular processing.
- "Human in the loop" scenarios use fast mode.
Which makes perfect sense, but the question is - does the billing also make sense?
thehamkercat•2h ago