frontpage.
newsnewestaskshowjobs

Made with ♥ by @iamnishanth

Open Source @Github

fp.

I replaced the front page with AI slop and honestly it's an improvement

https://slop-news.pages.dev/slop-news
1•keepamovin•2m ago•1 comments

Economists vs. Technologists on AI

https://ideasindevelopment.substack.com/p/economists-vs-technologists-on-ai
1•econlmics•4m ago•0 comments

Life at the Edge

https://asadk.com/p/edge
1•tosh•10m ago•0 comments

RISC-V Vector Primer

https://github.com/simplex-micro/riscv-vector-primer/blob/main/index.md
2•oxxoxoxooo•14m ago•1 comments

Show HN: Invoxo – Invoicing with automatic EU VAT for cross-border services

2•InvoxoEU•14m ago•0 comments

A Tale of Two Standards, POSIX and Win32 (2005)

https://www.samba.org/samba/news/articles/low_point/tale_two_stds_os2.html
2•goranmoomin•18m ago•0 comments

Ask HN: Is the Downfall of SaaS Started?

3•throwaw12•19m ago•0 comments

Flirt: The Native Backend

https://blog.buenzli.dev/flirt-native-backend/
2•senekor•21m ago•0 comments

OpenAI's Latest Platform Targets Enterprise Customers

https://aibusiness.com/agentic-ai/openai-s-latest-platform-targets-enterprise-customers
1•myk-e•24m ago•0 comments

Goldman Sachs taps Anthropic's Claude to automate accounting, compliance roles

https://www.cnbc.com/2026/02/06/anthropic-goldman-sachs-ai-model-accounting.html
2•myk-e•26m ago•4 comments

Ai.com bought by Crypto.com founder for $70M in biggest-ever website name deal

https://www.ft.com/content/83488628-8dfd-4060-a7b0-71b1bb012785
1•1vuio0pswjnm7•27m ago•1 comments

Big Tech's AI Push Is Costing More Than the Moon Landing

https://www.wsj.com/tech/ai/ai-spending-tech-companies-compared-02b90046
3•1vuio0pswjnm7•29m ago•0 comments

The AI boom is causing shortages everywhere else

https://www.washingtonpost.com/technology/2026/02/07/ai-spending-economy-shortages/
2•1vuio0pswjnm7•31m ago•0 comments

Suno, AI Music, and the Bad Future [video]

https://www.youtube.com/watch?v=U8dcFhF0Dlk
1•askl•33m ago•2 comments

Ask HN: How are researchers using AlphaFold in 2026?

1•jocho12•35m ago•0 comments

Running the "Reflections on Trusting Trust" Compiler

https://spawn-queue.acm.org/doi/10.1145/3786614
1•devooops•40m ago•0 comments

Watermark API – $0.01/image, 10x cheaper than Cloudinary

https://api-production-caa8.up.railway.app/docs
1•lembergs•42m ago•1 comments

Now send your marketing campaigns directly from ChatGPT

https://www.mail-o-mail.com/
1•avallark•45m ago•1 comments

Queueing Theory v2: DORA metrics, queue-of-queues, chi-alpha-beta-sigma notation

https://github.com/joelparkerhenderson/queueing-theory
1•jph•57m ago•0 comments

Show HN: Hibana – choreography-first protocol safety for Rust

https://hibanaworks.dev/
5•o8vm•59m ago•1 comments

Haniri: A live autonomous world where AI agents survive or collapse

https://www.haniri.com
1•donangrey•1h ago•1 comments

GPT-5.3-Codex System Card [pdf]

https://cdn.openai.com/pdf/23eca107-a9b1-4d2c-b156-7deb4fbc697c/GPT-5-3-Codex-System-Card-02.pdf
1•tosh•1h ago•0 comments

Atlas: Manage your database schema as code

https://github.com/ariga/atlas
1•quectophoton•1h ago•0 comments

Geist Pixel

https://vercel.com/blog/introducing-geist-pixel
2•helloplanets•1h ago•0 comments

Show HN: MCP to get latest dependency package and tool versions

https://github.com/MShekow/package-version-check-mcp
1•mshekow•1h ago•0 comments

The better you get at something, the harder it becomes to do

https://seekingtrust.substack.com/p/improving-at-writing-made-me-almost
2•FinnLobsien•1h ago•0 comments

Show HN: WP Float – Archive WordPress blogs to free static hosting

https://wpfloat.netlify.app/
1•zizoulegrande•1h ago•0 comments

Show HN: I Hacked My Family's Meal Planning with an App

https://mealjar.app
1•melvinzammit•1h ago•0 comments

Sony BMG copy protection rootkit scandal

https://en.wikipedia.org/wiki/Sony_BMG_copy_protection_rootkit_scandal
2•basilikum•1h ago•0 comments

The Future of Systems

https://novlabs.ai/mission/
2•tekbog•1h ago•1 comments
Open in hackernews

"A milion token context" Big AI says. But the model is accurate for 2-4K tokens

https://unagent.eu/2025/04/22/misleading-promises-of-long-context-llm/
2•kzawpl•9mo ago

Comments

kzawpl•9mo ago
Over last two years there were claims of better long context capabilities for LLM, but that is often tested on exact text search. New benchmark called NoLiMa shows that long context capability of LLM is still poor, if you want LLM to perform some abstraction and reasoning.
vessenes•9mo ago
Meh. NoLima is helpful, in that it shows what we all "feel" working with models -- there's a marked dropoff in accuracy and intelligence as we get past 4-32k of context, depending on the model.

But, it seems unreasonable to be super worried about this -- a year or two ago, models couldn't easily find needles in haystacks of long context. As training and test strategies delivered trainable content, this became a thing that could be done perfectly across millions of tokens of context. There has not been a good way to incentivize models to do anything more but remember locations yet.

We are (mostly) paying the full costs of attending to the entire context in current architectures, and it seems pretty reasonable that we will therefore be able to train those architectures to more fully attend across context if we get the right training data into (ideally) an RL loop.

NoLima is an okay test, but I think the most recent OpenAI tests are significantly better and quite interesting; OpenAI-MRCR and Graphwalks are both super smart ideas about how to programmatically generate data that is easy to evaluate and forces better cross context attention.

From their 4.1 announcement: Graphwalks fills the context window with a directed graph composed of hexadecimal hashes, and then asks the model to perform a breadth-first search (BFS) starting from a random node in the graph. We then ask it to return all nodes at a certain depth.

MRCR asks for direct quotes at semantically identified locations in the text, e.g. poems about tapirs, bears and ballerinas, as well as stories about tapirs, bears and ballerinas are generated, perhaps fifty each. The system is asked "give me the third poem about tapirs". This requires counting, conceptual attention, and also distinguishing between stories and poems.

They only test their own models on MRCR for the benchmark graph, but it's still worth reviewing: the accuracy curves are super interesting. https://openai.com/index/gpt-4-1/