frontpage.
newsnewestaskshowjobs

Made with ♥ by @iamnishanth

Open Source @Github

fp.

Show HN: Django N+1 Queries Checker

https://github.com/richardhapb/django-check
1•richardhapb•5m ago•1 comments

Emacs-tramp-RPC: High-performance TRAMP back end using JSON-RPC instead of shell

https://github.com/ArthurHeymans/emacs-tramp-rpc
1•todsacerdoti•10m ago•0 comments

Protocol Validation with Affine MPST in Rust

https://hibanaworks.dev
1•o8vm•14m ago•1 comments

Female Asian Elephant Calf Born at the Smithsonian National Zoo

https://www.si.edu/newsdesk/releases/female-asian-elephant-calf-born-smithsonians-national-zoo-an...
2•gmays•16m ago•0 comments

Show HN: Zest – A hands-on simulator for Staff+ system design scenarios

https://staff-engineering-simulator-880284904082.us-west1.run.app/
1•chanip0114•17m ago•1 comments

Show HN: DeSync – Decentralized Economic Realm with Blockchain-Based Governance

https://github.com/MelzLabs/DeSync
1•0xUnavailable•21m ago•0 comments

Automatic Programming Returns

https://cyber-omelette.com/posts/the-abstraction-rises.html
1•benrules2•24m ago•1 comments

Why Are There Still So Many Jobs? The History and Future of Workplace Automation [pdf]

https://economics.mit.edu/sites/default/files/inline-files/Why%20Are%20there%20Still%20So%20Many%...
2•oidar•27m ago•0 comments

The Search Engine Map

https://www.searchenginemap.com
1•cratermoon•34m ago•0 comments

Show HN: Souls.directory – SOUL.md templates for AI agent personalities

https://souls.directory
1•thedaviddias•35m ago•0 comments

Real-Time ETL for Enterprise-Grade Data Integration

https://tabsdata.com
1•teleforce•39m ago•0 comments

Economics Puzzle Leads to a New Understanding of a Fundamental Law of Physics

https://www.caltech.edu/about/news/economics-puzzle-leads-to-a-new-understanding-of-a-fundamental...
2•geox•40m ago•0 comments

Switzerland's Extraordinary Medieval Library

https://www.bbc.com/travel/article/20260202-inside-switzerlands-extraordinary-medieval-library
2•bookmtn•40m ago•0 comments

A new comet was just discovered. Will it be visible in broad daylight?

https://phys.org/news/2026-02-comet-visible-broad-daylight.html
2•bookmtn•45m ago•0 comments

ESR: Comes the news that Anthropic has vibecoded a C compiler

https://twitter.com/esrtweet/status/2019562859978539342
1•tjr•46m ago•0 comments

Frisco residents divided over H-1B visas, 'Indian takeover' at council meeting

https://www.dallasnews.com/news/politics/2026/02/04/frisco-residents-divided-over-h-1b-visas-indi...
3•alephnerd•47m ago•1 comments

If CNN Covered Star Wars

https://www.youtube.com/watch?v=vArJg_SU4Lc
1•keepamovin•53m ago•2 comments

Show HN: I built the first tool to configure VPSs without commands

https://the-ultimate-tool-for-configuring-vps.wiar8.com/
2•Wiar8•56m ago•3 comments

AI agents from 4 labs predicting the Super Bowl via prediction market

https://agoramarket.ai/
1•kevinswint•1h ago•1 comments

EU bans infinite scroll and autoplay in TikTok case

https://twitter.com/HennaVirkkunen/status/2019730270279356658
6•miohtama•1h ago•4 comments

Benchmarking how well LLMs can play FizzBuzz

https://huggingface.co/spaces/venkatasg/fizzbuzz-bench
1•_venkatasg•1h ago•1 comments

Why I Joined OpenAI

https://www.brendangregg.com/blog/2026-02-07/why-i-joined-openai.html
19•SerCe•1h ago•12 comments

Octave GTM MCP Server

https://docs.octavehq.com/mcp/overview
1•connor11528•1h ago•0 comments

Show HN: Portview what's on your ports (diagnostic-first, single binary, Linux)

https://github.com/Mapika/portview
3•Mapika•1h ago•0 comments

Voyager CEO says space data center cooling problem still needs to be solved

https://www.cnbc.com/2026/02/05/amazon-amzn-q4-earnings-report-2025.html
1•belter•1h ago•0 comments

Boilerplate Tax – Ranking popular programming languages by density

https://boyter.org/posts/boilerplate-tax-ranking-popular-languages-by-density/
1•nnx•1h ago•0 comments

Zen: A Browser You Can Love

https://joeblu.com/blog/2026_02_zen-a-browser-you-can-love/
1•joeblubaugh•1h ago•0 comments

My GPT-5.3-Codex Review: Full Autonomy Has Arrived

https://shumer.dev/gpt53-codex-review
2•gfortaine•1h ago•0 comments

Show HN: FastLog: 1.4 GB/s text file analyzer with AVX2 SIMD

https://github.com/AGDNoob/FastLog
2•AGDNoob•1h ago•1 comments

God said it (song lyrics) [pdf]

https://www.lpmbc.org/UserFiles/Ministries/AVoices/Docs/Lyrics/God_Said_It.pdf
1•marysminefnuf•1h ago•0 comments
Open in hackernews

LLMs Are Great, but They're Not Everything

4•procha•9mo ago
Three years after ChatGPT’s release, LLMs are in everything—demos, strategies, and visions of AGI. But from my observer’s perspective, the assumptions we’re making about what LLMs can do seem to be drifting from architectural reality.

LLMs are amazing at unstructured information—synthesizing, summarizing, reasoning loosely across large corpora. But they are not built for deterministic workflows or structured multi-step logic. And many of today’s most hyped AI use cases are sold exactly like that.

Architecture Matters

We often conflate different AI paradigms:

    LLMs (Transformers): Predict token sequences based on context. Great with language, poor with state, goal-tracking, or structured tool execution.

    Symbolic AI / State Machines: Rigid logic, excellent for workflows—bad at fuzziness or ambiguity.

    Reinforcement Learning (RL): Optimizes behavior over time via feedback, good for planning and adaptation, harder to scale and train.
Each of these has a domain. The confusion arises when we treat one as universally applicable. Right now, we’re pushing LLMs into business-critical automation roles where deterministic control matters—and they often struggle.

Agentic Frameworks: A Workaround, Not a Solution

Agentic frameworks have become popular: LLMs coordinating with other LLMs in roles like planner, executor, supervisor. But in many cases, this is just masking a core limitation: tool calling and orchestration are brittle. When a single agent struggles to choose correctly from 5 tools, giving 10 tools to 2 agents doesn’t solve the problem it just moves the bottleneck.

Supervising a growing number of agents becomes exponentially harder, especially without persistent memory or shared state. At some point, these setups feel less like robust systems and more like committee members hallucinating their way through vague job descriptions.

The Demo Trap

A lot of what gets shown in product demos—“AI agents booking travel, updating CRMs, diagnosing errors”—doesn’t hold up in production. Tools get misused, calls fail, edge cases break flows. The issue isn’t that LLMs are bad it’s that language prediction is not a process engine.

If even humans struggle to execute complex logic reliably, expecting LLMs to replace structured automation is not vision it’s optimism bias.

On the Silence of Those Who Know Better

What’s most puzzling is the silence of those who could say this clearly: the lab founders, the highly respected researchers, the already-rich executives. These are people who know that LLMs aren’t general agents. They have nothing to lose by telling the truth and everything to gain by being remembered as honest stewards.

Instead, they mostly play along. The AGI narrative rolls forward. Caution is reframed as doubt. Realistic planning becomes an obstacle to growth.

I get it, markets, momentum, investor expectations. But still: it’s hard not to feel that something more ethical and lasting is being passed over in favor of short-term shine.

A Final Thought

I might be wrong—but it’s hard to ignore the widening gap between what LLMs are and what C-level execs and investors want them to be. Engineering teams are under pressure to deliver the Hollywood dream, but that dream often doesn’t materialize. Meanwhile, sunk costs pile up, and the clock keeps ticking. This isn’t pessimism it’s recognizing that hype has gravity, and reality has limits. I’d love to be proven wrong and happily jump on the beautiful AI hype train if it ever truly arrives.

Comments

designorbit•9mo ago
Love this perspective. You nailed the core issue: LLMs ≠ process engines. And agentic frameworks stacking roles often end up masking fragility instead of fixing it.

One thing I’ve been exploring is this middle ground—what if we stop treating LLMs as process executors, and instead make them contextual participants powered by structured, external memory + state layers?

I’m building Recallio as a plug-and-play memory API exactly for this gap: letting agents/apps access persistent, scoped memory without duct-taping vector DBs and custom orchestration every time.

Totally agree the dream won’t materialize through token prediction alone—but maybe it does if we reconnect LLMs with better state + memory infra.

Have you seen teams blending external memory/state successfully in production? Or are most still trapped inside the prompt+vector loop?

dpao001•8mo ago
What is your opinion on Manus. Is it closing in on AGI or is it as you suggest a sticking plaster waiting to break?