frontpage.
newsnewestaskshowjobs

Made with ♥ by @iamnishanth

Open Source @Github

fp.

Ask HN: AI Generated Diagrams

1•voidhorse•2m ago•0 comments

Microsoft Account bugs locked me out of Notepad – are Thin Clients ruining PCs?

https://www.windowscentral.com/microsoft/windows-11/windows-locked-me-out-of-notepad-is-the-thin-...
1•josephcsible•2m ago•0 comments

Show HN: A delightful Mac app to vibe code beautiful iOS apps

https://milq.ai/hacker-news
1•jdjuwadi•5m ago•1 comments

Show HN: Gemini Station – A local Chrome extension to organize AI chats

https://github.com/rajeshkumarblr/gemini_station
1•rajeshkumar_dev•5m ago•0 comments

Welfare states build financial markets through social policy design

https://theloop.ecpr.eu/its-not-finance-its-your-pensions/
2•kome•9m ago•0 comments

Market orientation and national homicide rates

https://onlinelibrary.wiley.com/doi/10.1111/1745-9125.70023
3•PaulHoule•9m ago•0 comments

California urges people avoid wild mushrooms after 4 deaths, 3 liver transplants

https://www.cbsnews.com/news/california-death-cap-mushrooms-poisonings-liver-transplants/
1•rolph•10m ago•0 comments

Matthew Shulman, co-creator of Intellisense, died 2019 March 22

https://www.capenews.net/falmouth/obituaries/matthew-a-shulman/article_33af6330-4f52-5f69-a9ff-58...
3•canucker2016•11m ago•1 comments

Show HN: SuperLocalMemory – AI memory that stays on your machine, forever free

https://github.com/varun369/SuperLocalMemoryV2
1•varunpratap369•12m ago•0 comments

Show HN: Pyrig – One command to set up a production-ready Python project

https://github.com/Winipedia/pyrig
1•Winipedia•14m ago•0 comments

Fast Response or Silence: Conversation Persistence in an AI-Agent Social Network [pdf]

https://github.com/AysajanE/moltbook-persistence/blob/main/paper/main.pdf
1•EagleEdge•14m ago•0 comments

C and C++ dependencies: don't dream it, be it

https://nibblestew.blogspot.com/2026/02/c-and-c-dependencies-dont-dream-it-be-it.html
1•ingve•15m ago•0 comments

Show HN: Vbuckets – Infinite virtual S3 buckets

https://github.com/danthegoodman1/vbuckets
1•dangoodmanUT•15m ago•0 comments

Open Molten Claw: Post-Eval as a Service

https://idiallo.com/blog/open-molten-claw
1•watchful_moose•16m ago•0 comments

New York Budget Bill Mandates File Scans for 3D Printers

https://reclaimthenet.org/new-york-3d-printer-law-mandates-firearm-file-blocking
2•bilsbie•17m ago•1 comments

The End of Software as a Business?

https://www.thatwastheweek.com/p/ai-is-growing-up-its-ceos-arent
1•kteare•18m ago•0 comments

Exploring 1,400 reusable skills for AI coding tools

https://ai-devkit.com/skills/
1•hoangnnguyen•18m ago•0 comments

Show HN: A unique twist on Tetris and block puzzle

https://playdropstack.com/
1•lastodyssey•22m ago•1 comments

The logs I never read

https://pydantic.dev/articles/the-logs-i-never-read
1•nojito•23m ago•0 comments

How to use AI with expressive writing without generating AI slop

https://idratherbewriting.com/blog/bakhtin-collapse-ai-expressive-writing
1•cnunciato•24m ago•0 comments

Show HN: LinkScope – Real-Time UART Analyzer Using ESP32-S3 and PC GUI

https://github.com/choihimchan/linkscope-bpu-uart-analyzer
1•octablock•24m ago•0 comments

Cppsp v1.4.5–custom pattern-driven, nested, namespace-scoped templates

https://github.com/user19870/cppsp
1•user19870•26m ago•1 comments

The next frontier in weight-loss drugs: one-time gene therapy

https://www.washingtonpost.com/health/2026/01/24/fractyl-glp1-gene-therapy/
2•bookofjoe•28m ago•1 comments

At Age 25, Wikipedia Refuses to Evolve

https://spectrum.ieee.org/wikipedia-at-25
2•asdefghyk•31m ago•4 comments

Show HN: ReviewReact – AI review responses inside Google Maps ($19/mo)

https://reviewreact.com
2•sara_builds•32m ago•1 comments

Why AlphaTensor Failed at 3x3 Matrix Multiplication: The Anchor Barrier

https://zenodo.org/records/18514533
1•DarenWatson•33m ago•0 comments

Ask HN: How much of your token use is fixing the bugs Claude Code causes?

1•laurex•36m ago•0 comments

Show HN: Agents – Sync MCP Configs Across Claude, Cursor, Codex Automatically

https://github.com/amtiYo/agents
1•amtiyo•37m ago•0 comments

Hello

2•otrebladih•38m ago•1 comments

FSD helped save my father's life during a heart attack

https://twitter.com/JJackBrandt/status/2019852423980875794
3•blacktulip•41m ago•0 comments
Open in hackernews

Dynamic YAML with Python computed properties for fusing API workflows and SQL

https://sequor.dev/
13•maxgrinev•7mo ago

Comments

maxgrinev•7mo ago
Dynamic YAML with computed properties could have applications beyond API integrations. We use Python since it's familiar to data engineers, but our original prototype with JavaScript had even more compact syntax. Would love feedback on our approach and other use cases for dynamic YAML.
mdaniel•7mo ago
You seem to have stepped on the same landmine that Ansible did, by defaulting to the jinja2 [aka text/template silliness in golang] of using double mustaches in YAML. I hope you enjoy quoting things because you're going to be quoting everything for all time because "{" is a meaningful character in YAML. Contrast

      parameters:
        status: "{{ var('order_status') }}"
with

      parameters:
        # made famous by GitHub Actions
        status: ${{ var('order_status') }}

        # or the ASP.Net flavor:
        status2: <%= var('order_status2') %>

        # or the PHP flavor:
        status3: <?= var('order_status3') ?>
and, just like Ansible, it's going to get insaneo when your inner expression has a quote character, too, since you'll need to escape it from the YAML parser leading to leaning toothpick syndrome e.g.

      parameters:
        status: "{{ eval('echo \"hello\"') }}"
---

If you find my "but what about the DX?" compelling, also gravely consider why in the world `data_expression:` seems to get a pass, in that it is implicitly wrapped in the mustaches

---

edit: ah, that's why https://github.com/paloaltodatabases/sequor/blob/v1.2.0/src/... but https://github.com/paloaltodatabases/sequor/blob/v1.2.0/src/... is what I would suggest changing before you get a bunch of tech debt and have to introduce a breaking change. From

    str_rendered = Template(template_str, undefined=StrictUndefined).render(jinja_context)
to

      str_rendered = Template(template_str, undefined=StrictUndefined,
          variable_start_string="${{",
          variable_end_string="}}"
      ).render(jinja_context)
      # et al, if you want to fix the {# and {%, too

per https://jinja.palletsprojects.com/en/stable/api/#jinja2.Temp...
maxgrinev•7mo ago
Thank you for such an insightful suggestion and deep dive into the code - this is amazing feedback! I'll definitely switch to the ${{}} syntax you suggested.

Quick clarification on _expression: we intentionally use two templating systems - Jinja {{ }} for simple variable injection, and Python *_expression for complex logic that Jinja can't handle.

Actually, since we only use Jinja for variable substitution, should I just drop it entirely? We have another version implemented in Java/JavaScript that uses simple ${var-name} syntax, and we already have Python expressions for advanced scenarios. Might be cleaner to unify on ${var-name} + Python expressions.

Given how deeply you've looked into our system, would you consider using Sequor? I can promise full support including fundamental changes like these - your technical insight would be invaluable for getting the design right early on.

mdaniel•7mo ago
I'm not the target audience for this product, but I experience the pain from folks who embed jinja2/golang in yaml every single day, so I am trying to do whatever I can to nip those problems in the bud so maybe one day it'll stop becoming the default pattern

As for "complex logic that jinja can't handle," I am not able to readily identify what that would mean given that jinja has executable blocks but I do agree with you that its mental model can make writing imperative code inside those blocks painful (e.g. {% set _ = my_dict.update({"something":"else}) %} type silliness)

it ultimately depends on whether those _expression: stanzas are always going to produce a Python result or they could produce arbitrary output. If the former, then I agree with you jinja2 would be terrible for that since it's a templating language[1]. If the latter, then using jinja2 would be a harmonizing choice so the author didn't have to keep two different invocation styles in their head at once

1: one can see that in ansible via this convolution:

  body: >-
    {%- set foo = {} -%}
    {%- for i in ... -%}
    {%- endfor -%}
    {# now emit the dict as json #}
    {{ foo | to_json }}
bz_bz_bz•7mo ago
Recalculating customer metrics like that in your main example seems like a massive waste of snowflake resources, no?
maxgrinev•7mo ago
Good catch! Yes, recalculating metrics across all historical data every run would be expensive in Snowflake. I chose this example for simplicity to show how the three operations work together, but you're absolutely right about the inefficiency. The flow can easily be optimized for incremental processing - pull only recent orders and update metrics for just the affected customers:

steps:

  # Step 1: Pull only NEW orders since last run

  - op: http_request
    request:
      source: "shopify"
      url: "https://{{ var('store_name') }}.myshopify.com/admin/api/{{ var('api_version') }}/orders.json"
      method: GET
      parameters:
        status: any
        updated_at_min_expression: "{{ last_run_timestamp() or '2024-01-01' }}"
      headers:
        "Accept": "application/json"
    response:
      success_status: [200]
      tables:
        - source: "snowflake"
          table: "shopify_orders_incremental"
          columns: { ... }
          data_expression: response.json()['orders']

  # Step 2: Update metrics ONLY for customers with new/changed orders
  - op: transform
    source: "snowflake"
    query: |
      MERGE INTO customer_metrics cm
      USING (
        SELECT 
          customer_id,
          SUM(total_price::FLOAT) as total_spend,
          COUNT(*) as order_count
        FROM shopify_orders 
        WHERE customer_id IN (
          SELECT DISTINCT customer_id 
          FROM shopify_orders_incremental
        )
        GROUP BY customer_id
      ) new_metrics
      ON cm.customer_id = new_metrics.customer_id
      WHEN MATCHED THEN 
        UPDATE SET 
          total_spend = new_metrics.total_spend,
          order_count = new_metrics.order_count,
          updated_at = CURRENT_TIMESTAMP()
      WHEN NOT MATCHED THEN
        INSERT (customer_id, total_spend, order_count, updated_at)
        VALUES (new_metrics.customer_id, new_metrics.total_spend, new_metrics.order_count, CURRENT_TIMESTAMP())

  # Step 3: Sync only customers whose metrics were just updated
  - op: http_request
    input:
      source: "snowflake"
      query: |
        SELECT customer_id, email, total_spend, order_count
        FROM customer_metrics 
        WHERE updated_at >= '{{ run_start_timestamp() }}'
    request:
      source: "mailchimp"
      url_expression: |
        f"https://us1.api.mailchimp.com/3.0/lists/{var('list_id')}/members/{hashlib.md5(record['email'].encode()).hexdigest()}"
      method: PATCH
      body_expression: |
        {
          "merge_fields": {
            "TOTALSPEND": record['total_spend'],
            "ORDERCOUNT": record['order_count']
          }
        }
This scales much better: if you have 100K customers but only 50 new orders, you're recalculating metrics for ~50 customers instead of all 100K. Same simple workflow pattern, just production-ready efficiency.

Does this address your concern or did you mean something else? Would you suggest I use a slightly more complex but optimized example for the main demo? Your feedback is welcome and appreciated!

bz_bz_bz•7mo ago
I appreciate the response and detail. The code in your response definitely piqued my interest in the product more than the initial demo code does, but I do understand why you’d want simplicity on your homepage.
vivzkestrel•7mo ago
forgive me for asking a few daft questions but i want to know a few things - who is the target audience for this (programmers / sql admins / companies with these guys) - what are they gaining using this tool - who are some other providers that offer similar stuff - how is your offering different from theirs - is this a commercial product, do you have plans to commercialize it like turning it into a subscription based model?
maxgrinev•7mo ago
Great questions! Let me break this down:

Target audience:

1) Enterprise IT teams who already know SQL/YAML - they can build complex integrations after ~1 hour of training using our examples, no prior Python needed

2) Modern data teams using dbt - Sequor complements it perfectly for data ingestion and activation

What they gain:

Full flexibility with structure. Enterprise IT folks go from zero to building end-to-end solutions in an hour without needing developer support. Think "dbt but for API integrations."

Competitors & differentiation:

1) Zapier/n8n: GUI looks easy but gets complex fast, poor database integration, can't handle bulk data

2) Fivetran/Airbyte: Pre-built connectors only, zero customization, ingestion-only

3) Us: Only code-first solution using open tech stack (SQL+YAML+Python) - gives you flexibility with Fivetran reliability

Business model:

1) Core engine: Open source, free forever

2) Revenue: On-premise server with enterprise features (RBAC, observability and execution monitoring with notifications, audit logs) - flat fee per installation, no per-row costs like competitors

3) Services: Custom connector development and app-to-app integration flows (we love this work!)

4) Cloud version maybe later - everyone wants on-premise now

The key difference:

we're the only tool that's both easy to learn AND highly customizable for all major API integration patterns: data ingestion, reverse ETL, and multi-step iPaaS workflows - all in one platform.

seebeen•7mo ago
What a great idea - let's combine one of the worst languages ever invented with database backend which wasn't ever meant to be used as a "processing engine"

/s