> require them to be majority hand written.
We should specify the outcome not the process. Expecting the contributor to understand the patch is a good idea.
> Juniors may be encouraged/required to elide LLM-assisted tooling for a period of time during their onboarding.
This is a terrible idea. Onboarding is a lot of random environment setup hitches that LLMs are often really good at. It's also getting up to speed on code and docs and I've got some great text search/summarizing tools to share.
I’ve never heard of this cliff before. Has anyone else experienced this?
I can make the problem input bigger as I want.
Each LLM have a different thresholf for each problem, when crossed the performance of the LLM collapse.
One feature others have noted is that the Opus 4 context buffer rarely "wears out" in a work session. It can, and one needs to recognize this and start over. With other agents, it was my routine experience that I'd be lucky to get an hour before having to restart my agent. A reliable way to induce this "cliff" is to let AI take on a much too hard problem in one step, then flail helplessly trying to fix their mess. Vibe-coding an unsuitable problem. One can even kill Opus 4 this way, but that's no way to run a race horse.
Some "persistence of memory" harness is as important as one's testing harness, for effective AI coding. With the right care having AI edit its own context prompts for orienting new sessions, this all matters less. AI is spectacularly bad at breaking problems into small steps without our guidance, and small steps done right can be different sessions. I'll regularly start new sessions when I have a hunch that this will get me better focus for the next step. So the cliff isn't so important. But Opus 4 is smarter in other ways.
And one of the things with current generators is that they tend to make things more complex over time, rather than less. It's always me prompting the LLM to refactor things to make it simpler, or doing the refactoring once it's gotten to complex for the LLM to deal with.
So at least with the current generation of LLMs, it seems rather inevitable that if you just "give LLMs their head" and let them do what they want, eventually they'll create a giant Rube Goldberg mess that you'll have to try to clean up.
ETA: And to the point of the article -- if you're an old salt, you'll be able to recognize when the LLM is taking you out to sea early, and be able to navigate your way back into shallower waters even if you go out a bit too far. If you're a new hand, you'll be out of your depth and lost at sea before you know it's happened.
That said, I do think it would be nice for people to note in pull requests which files have AI gen code in the diff. It's still a good idea to look at LLM gen code vs human code with a bit different lens, the mistakes each make are often a bit different in flavor, and it would save time for me in a review to know which is which. Has anyone seen this at a larger org and is it of value to you as a reviewer? Maybe some tool sets can already do this automatically (I suppose all these companies report the % of code that is LLM generated must have one if they actually have these granular metrics?)
While on the other hand real nation-state threat actors would face no such limitations.
On a more general level, what concerns me isn't whether people use it to get utility out of it (that would be silly), but the power-imbalance in the hand of a few, and with new people pouring their questions into it, this divide getting wider. But it's not just the people using AI directly but also every post online that eventually gets used for training. So to be against it would mean to stop producing digital content.
This often is brought up that if you don't use LLMs now to produce so-so code you will somehow magically completely fall off when the LLMs all of a sudden start making perfect code as if developers haven't been learning new tools constantly as the field as evolved. Yes, I use old technology, but also yes I try new technology and pick and choose what works for me and what does not. Just because LLMs don't have a good place in my work flow does not mean I am not using them at all or that I haven't tried to use them.
The blog itself is using Alpine JS, which is a human-written framework 6 years ago (https://github.com/alpinejs/alpine), and you can see the result is not good.
Two completely unnecessary request to: jsdelivr.net and net.cdn.cloudflare.net
Never actually expected it to be posted on HN. Working on getting a static version up now.
It might not solve every problem, but it solves enough of them better enough it belongs in the tool kit.
That comparison kind of makes my point though. Sure you can bury your face into Tik Tok for 12hrs a day and they do kind of suck at Excel but smartphones are massively useful and used tools by (approximately) everyone.
Someone not using a smartphone in this day and age is very fairly a 'luddite'.
A computer is a bicycle for the mind; an LLM is an easy-chair.
3 have obviously only read the title, and 3 comments how the article require JS.
Well played HN.
Otherwise please use the original title, unless it is misleading or linkbait.
This title counts as linkbait so I've changed it. It turns out the article is much better (for HN) than the title suggests.
Good change btw.
Most of the current discourse on AI coding assistants sounds either breathlessly optimistic or catastrophically alarmist. What’s missing is a more surgical observation: the disruptive effect of LLMs is not evenly distributed. In fact, the clash between how open source and industry teams establish trust reveals a fault line that’s been papered over with hype and metrics.
FOSS project work on a trust basis - but industry standard is automated testing, pair programming, and development speed. That CRUD app for finding out if a rental car is available? Not exactly in need for a hand-crafted piece of code, and no-one cares if Junior Dev #18493 is trusted within the software dev organization.
If the LLM-generated code breaks, blame gets passed, retros are held, Jira tickets multiply — the world keeps spinning, and a team fixes it. If a junior doesn’t understand their own patch, the senior rewrites it under deadline. It’s not pretty, but it works. And when it doesn’t, nobody loses “reputation” - they lose time, money, maybe sleep. But not identity.
LLMs challenge open source where it’s most vulnerable - in its culture. Meanwhile, industry just treats them like the next Jenkins: mildly annoying at first, but soon part of the stack.
The author loves the old ways, for many valid reasons: Gabled houses are beautiful, but outside of architectural circles, prefab is what scaled the suburbs, not timber joints and romanticism.
I understand the frustration: meaning reduced to metadata, debate replaced with reaction, and the richness of human thought lost in the echo of paraphrased content. If there is an exit to this timeline, I too would like to request the coordinates.
[ai]: rewrote the documentation ...
This is helps us to put another set of "glasses" as we later review the code.
If you use AI as tab-complete but it's what you would've done anyway, should you flag it? I don't know, plenty to think about when it comes to what the right amount of disclosure is.
I certainly wish that with our company, people could flag (particularly) large commits as coming from a tool rather than a person, but I guess the idea is that the person is still responsible for whatever the tool generates.
The problem is that it's incredibly enticing for over-worked engineers to have AI do large (ie. diffs) but boring tasks that they'd typically get very little recognition for (eg. ESLint migrations).
The HN submission has been editorialised since it was submitted, originally said "Yes, I will judge you for using AI..." and a lot of the replies early on were dismissive based on the title alone.
If someone uses an LLM and produces bug-free code, I'll trust them. If someone uses an LLM and produces buggy code, I won't trust them. How is this different from when they were only using their brain to produce the code?
The problem is often really one of miscommunication, the task may be clear to the person working on it, but with frequent context resets it's hard to make sure the LLM also knows what the whole picture is and they tend to make dumb assumptions when there's ambiguity.
The thing that 4o does with deep research where it asks for additional info before it does anything should be standard for any code generation too tbh, it would prevent a mountain of issues.
It’s like if someone started bricking up tunnel entrances and painting ultra realistic versions of the classic Road Runner tunnel painting on them, all over the place. You’d have to stop and poke every underpass with a stick just to be sure.
There's so much more than "works well". There are many cues that exist close to code, but are not code:
I trust more if the contributor explains their change well.
I trust more if the contributor did great things in the past.
I trust more if the contributor manages granularity well (reasonable commits, not huge changes).
I trust more if the contributor picks the right problems to work on (fixing bugs before adding new features, etc).
I trust more if the contributor proves being able to maintain existing code, not just add on top of it.
I trust more if the contributor makes regular contributions.
And so on...
A good rule of thumb is to simply reject any work that has had involvement of an LLM, and ignore any communication written by an LLM (even for EFL speakers, I'd much rather have your "bad" English than whatever ChatGPT says for you).
I suspect that as the serious problems with LLMs become ever more apparent, this will become standard policy across the board. Certainly I hope so.
This is standard for any activity where accuracy / safety is paramount - you validate the process. Hence things like maintenance logs for airplanes.
I found out very early that under no circumstances you may have the code you don't understand, anywhere. Well, you may, but not in public, and you should commit to understanding it before anyone else sees that. Particularly before sales guys do.
However, AI can help you with learning too. You can run experiments, test hypotheses and burn your fingers so fast. I like it.
Sorry about the JS stuff I wrote this also fooling around with alpine.js for fun. I never expected it to make it to HN. I'll get a static version up and running.
Happy to answer any questions or hear other thoughts.
Edit: https://static.jaysthoughts.com/
Static version here with slightly wonky formatting, sorry for the hassle.
Edit2: Should work on mobile now well, added a quick breakpoint.
gblargg•5h ago
(Works on older browsers and doesn't require JavaScript except to get past CloudSnare).