That's what I've found as well. Start describing or writing a function, include the whole file for context and it'll do its job. Give it a whole codebase and it will just wander in the woods burning tokens for ten minutes trying to solve dependencies.
That, and we also don't only focus on the textual description of a problem when we encounter a problem. We don't see the debugger output and go "how do I make this bad output go away?!?". Oh, I am getting an authentication error. Well, meaybe I should just delete the token check for that code path...problem solved?!
No. Problem very much not-solved. In fact, problem very much very bigger big problem now, and [Grug][1] find himself reaching for club again.
Software engineers are able to step back, think about the whole thing, and determine the root cause of a problem. I am getting an auth error...ok, what happens when the token is verified...oh, look, the problem is not the authentication at all...in fact there is no error! The test was simply bad and tried to call a higher privilege function as a lower privilege user. So, test needs to be fixed. And also, even though it isn't per-se an error, the response for that function should maybe differentiate between "401 because you didn't authenticate" and "401 because your privileges are too low".
Put another way, you have an excel roster corresponding to people with accounts where some need to have their account shutdown but you only have their first and last names as identifiers, and the pool is sufficiently large that there are more than one person per a given set of names.
You can't shut down all accounts with a given name, and there is no unique identifier. How do you solve this?
You have to ask and be given that unique identifier that differentiates between the undecidable. Without that, even the person can't do the task.
The person can make guesses, but those guesses are just hallucinations with a significant n probability towards a bad repeat outcome.
At a core level I don't think these type of issues are going to be solved.
What an LLM cannot do today is almost irrelevant in the tide of change upon the industry. The fact is, with improvements, it doesn't mean an LLM cannot do it tomorrow.
LLMs may get better, but it will not be what people are clamoring them to be.
I mean, there was and then there wasn't. All of those things are shrinking fast because we handed over control to people who care more about profits than customers because we got too comfy and too cheap, and now right to repair is screwed.
Honestly, I see llm-driven development as a threat to open source and right to repair, among the litany of other things
Even translations between human languages (which allows for ambiguity) can be messy. Imagine if the target language is for a system that will exactly do as told unless someone has qualified those actions as bad.
Years ago I gave up compiling these large applications all together. I compiled Firefox via FreeBSD's (v8.x) ports system, that alone was a nightmare.
I cannot imagine what it would be like to compile GNOME3 or KDE or Libreoffice. Emacs is the largest thing I compile now.
While a collision hasn't yet been found for a SHA256, by the pigeonhole principle they exist, and the computer will not be able to decide between the two packages leading to system level failure, with errors that have no link to cause.
These things generally speaking contain properties of mathematical chaos that no admin would ever approach or touch because its unmaintainable. Non-deterministic problems are the most costly problems because troubleshooting which is based on properties of determinism, doesn't work.
Taken to a next step, recognizing this makes the investment in such a moonshot pipedream (overcoming these inherent problems in a deterministic way), recklessly negligent.
The worst thing is that you can't point those bugs out to the LLM. It will prefer to rewrite the whole code instead. With new bugs of course. So you are back to square one.
> Recency bias: They suffer a strong recency bias in the context window.
> Hallucination: They commonly hallucinate details that should not be there.
To be fair, those are all issues that most human engineers I've worked with (including myself!) have struggled with to various degrees, even if we don't refer to them the same way. I don't know about the rest of you, but I've certainly had times where I found out that an important nuance of a design was overlooked until well into the process of developing something, forgotten a crucial detail that I learned months ago that would have helped me debug something much faster than if I had remembered it from the start, or accidentally make an assumption about how something worked (or misremembered it) and ended up with buggy code as a result. I've mostly gotten pretty positive feedback about my work over the course of my career, so if I "can't build software", I have to worry about the companies that have been employing me and my coworkers who have praised my work output over the years. Then again, I think "humans can't build software reliably" is probably a mostly correct statement, so maybe the lesson here is that software is hard in general.
> AI is awesome for coding! [Opus 4]
> No AI sucks for coding and it messed everything up! [4o]
Would really clear the air. People seem to be evaluating the dumbest models (apparently because they don't know any better?) and then deciding the whole AI thing just doesn't work.
They need to mention significantly more than that: https://dmitriid.com/everything-around-llms-is-still-magical...
--- start quote ---
Do we know which projects people work on? No
Do we know which codebases (greenfield, mature, proprietary etc.) people work on? No
Do we know the level of expertise the people have? No.
Is the expertise in the same domain, codebase, language that they apply LLMs to? We don't know.
How much additional work did they have reviewing, fixing, deploying, finishing etc.? We don't know.
--- end quote ---
And that's just the tip of the iceberg. And that is an iceberg before we hit another one: that we're trying to blindly reverse engineer a non-deterministic blackbox inside a provider's blackbox
I feel personally described by this statement. At least on a bad day, or if I'm phoning it in. Not sure if that says anything about AI - maybe just that the whole "mental models" part is quite hard.
If we put human engineering teams in the same situation, we’d expect them to do a terrible job, so why do we expect LLMs to do any better?
We can dramatically improve the output of LLM software development by using all those processes and tools that help engineering teams avoid these problems:
https://jim.dabell.name/articles/2025/08/08/autonomous-softw...
What's happened for me recently is I've started to revisit the idea that typing speed doesn't matter.
This is an age-old thing, most people don't think it really matters how fast you can type. I suppose the steelman is, most people think it doesn't really matters how fast you can get the edits to your code that you want. With modern tools, you're not typing out all the code anyway, and there's all sorts of non-AI ways to get your code looking the way you want. And that doesn't matter, the real work of the engineer is the architecture of how the whole program functions. Typing things faster doesn't make you get to the goal faster, since finding the overall design is the limiting thing.
But I've been using Claude for a while now, and I'm starting to see the real benefit: you no longer need to concentrate to rework the code.
It used to be burdensome to do certain things. For instance, I decided to add an enum value, and now I have to address all the places where it matches on that enum. This wasn't intellectually hard in the old world, you just got the compiler to tell you where the problems were, and you added a little section for your new value to do whatever it needed, in all the places it appeared.
But you had to do this carefully, otherwise you would just cause more compile/error cycles. Little things like forgetting a semicolon will eat a cycle, and old tools would just tell you the error was there, not fix it for you.
LLMs fix it for you. Now you can just tell Claude to change all the code in a loop until it compiles. You can have multiple agents working on your code, fixing little things in many places, while you sit on HN and muse about it. Or perhaps spend the time considering what direction the code needs to go.
The big thing however is that when you're no longer held up by little compile errors, you can do more things. I had a whole laundry list of things I wanted to change about my codebase, and Claude did them all. Nothing on the business level of "what does this system do" but plenty of little tasks that previously would take a junior guy all day to do. With the ability to change large amounts of code quickly, I'm able to develop the architecture a lot faster.
It's also a motivation thing: I feel bogged down when I'm just fixing compile errors, so I prioritize what to spend my time on if I am doing traditional programming. Now I can just do the whole laundry list, because I'm not the guy doing it.
People complained endlessly about the internet in the early to mid 90s, its slow, static, most sites had under construction signs on them, your phone modem would just randomly disconnect. The internet did suck in alot of ways and yet people kept using it.
Twitter sucked in the mid 2000s, we saw the fail whale weekly and yet people continued to use it for breaking news.
Electric cars sucked, no charging, low distance, expensive and yet no matter how much people complain about them they kept getting better.
Phones sucked, pre 3G was slow, there wasn't much you could use them for before app stores and the cameras were potato quality and yet people kept using them while they improved.
Always look for the technology that sucks and yet people keep using it because it provides value. LLM's aren't great at alot of tasks and yet no matter how much people complain about them, they keep getting used and keep improving through constant iteration.
LLM"s amy not be able to build software today, but they are 10x better than where they were in 2022 when we first started using chatgpt. Its pretty reasonable to assume in 5 years they will be able to do these types of development tasks.
9cb14c1ec0•31m ago
The more I use claude code, the more frustrated I get with this aspect. I'm not sure that a generic text-based LLM can properly solve this.
cmrdporcupine•17m ago
You can let it do the grunt coding, and a lot of the low level analysis and testing, but you absolutely need to be the one in charge on the design.
It frankly gives me more time to think about the bigger picture within the amount of time I have to work on a task, and I like that side of things.
There's definitely room for a massive amount of improvement in how the tool presents changes and suggestions to the user. It needs to be far more interactive.
dlivingston•12m ago
My gut feeling is that this problem won't be solved until some new architecture is invented, on the scale of the transformer, which allows for short-term context, long-term context, and self-modulation of model weights (to mimic "learning"). (Disclaimer: hobbyist with no formal training in machine learning.)
[0]: https://news.ycombinator.com/item?id=44798166