That the ADS1115 costs <$1 on LCSC means they buy millions from them every year. They are one of the biggest trustable players in Asia.
I have access to our internal STM32 pricing. You'd be shocked.
They are huge step ahead: the upcoming CH32H417 has pretty much all PHYs integrated (!). For 10/100M Ethernet, USB-C 5GBbps and USB HS 480Mbps. That dramatically reduces the components needed to get that stuff running.
I also build a small robot with the ultra cheap CH32V003. That's a full fledged 48MHz microcontroller with 16kb flash and 2kb SRAM. Fun little thing.
If you are used to the ST HAL you will be able to work with them within 10 minutes. Their API style is similar.
One supplier I developed a relationship with showed us their internal numbers and it was $1,000-3,000 per wafer for 130nm-180nm nodes with a minimum order of 25 wafers. Once the part is designed and the mask is made, the cost is mostly just the setup plus whatever they want for the IP. The silicon itself is often cheaper than the packaging around it.
Weirdly honest deal, haha.
The vast majority of counterfeit chips I've seen were from ghost shifts but IIRC TI fabs all their analog parts in house, I doubt they're ghost shift parts or failed QC.
I think its probably a relabeled ADS1015.
(also interestingly the STM32 clones I've seen had stacked die flash because they didn't fab them in a technology that could also do flash, so you can easily tell the counterfeit from sanding down the package and looking for an extra set of bonding wires; it's also a cool place to access the internal flash bus if you wanna bypass some readout protection :) )
I don’t usually buy from electronics markets in Shenzhen either so that probably helps.
Getting full spec performance out of an ADC requires having good layout power supply routing etc.
I would transplant the chips from PCB A to PCB B and vice versa. See if the performance follows the chip or the PCB.
Also check power consumption before / after board swaps. If they are fakes, that would be significantly different.
Analogy: https://datasheet.lcsc.com/lcsc/2302211830_analogysemi-ADX11...
TI: https://www.ti.com/lit/ds/symlink/ads1115.pdf
Analogy's datasheet is directly cribbed from TI's (see TI Fig. 7-7 / Analogy Fig. 22½, pg. 18).
This already passes my "run away screaming" threshold for trust, but a decapping would help me understand whether they've stolen the physical design (bad) or just cloned it (bad).
See also: https://community.element14.com/members-area/f/forum/53365/n...
What's wrong with cloning a chip functionality-wise? This is basically how the industry has operated since its infancy, and what gave us jelly bean logic parts and transistors, x86 and the PC revolution, ...
(just talking about the cloning part here, not counterfeit markings or datasheet copyright infringement, or copying mask work)
Every clone of any sufficiently complex Thing will have subtle quirks and edge cases compared to the original and as long as I can work around them for only that specific clone model, that's easy.
But clones that have no way of determining if the part is a clone? That's bad to even exist because unscrupulous actors will go and repackage "legitimate clone" chips into faked originals if the price difference is big enough.
And if you want to see CERN's multimeter, check this out.
Marco Reps is a treasure.
Non-linear as hell - and evil side effects once you use the calibration curves.
There are a bunch of reasons but the primary reason is that good ADCs are made using a different mixed signal process than microcontrollers. MCU ADCs are capacitive charge-balancing successive-approximation type which limits their sensitivity and precision.
Standalone ADCs also eliminate significant sources of noise like temperature fluctuations and electronic noise (the digital logic on the chip often runs at less than 1Mhz for example)
Only ugly two-chip solutions or hyper exotic stuff with no community.
No competition or no market?
I can't imagine Espressif is selling much volume of these chips.
The fact that they can't even fix their SPI module would tend to indicate that their engineering staff is very thin.
I don't think that's quite accurate for reasonably modern MCUs. You can typically shake 10+ bits out of them, but you need to take a lot of precautions, such as providing very stable external reference voltage and shutting down unneeded subsystems of the chip.
They're still not as good as standalone ADCs, but they're at a point where you can actually use them for 90% of things that require an ADC.
In cases where you need more bits, there's a lot more that must go into the design, which is what gives me a pause about the article. There's nothing about the PSU the author is using or how he managed the MCU noise and RFI. So I don't know if the findings here are that these are knock-off devices with worse specs, or if his overhead LED lamp is causing a lot of interference.
The chip has a 12bit SAR ADC. Layout and board design mattered a lot, but even the worst ones had 10 bits worth, and the best one had nearly 12 bits effective.
That was without doing too much on the software side, meaning the other modules weren't running, besides a single serial output. On the bad boards the serial affected it, but on the good board very little.
Of interest from early in the article: I'm curious how these external ones compare to onboard, e.g. STM32's. Btw, the TI one listed is actually pretty simple to use in comparison. The ST integrated ones have more config and hardware considerations, e.g. complicated calibration procedures, external VREF (mentioned) etc. So, if you do app the config, is the integrated one as good?
The integrated ones usually have nice ways to integrate with timers and other onboard periphs.
Does it work? Well, does your design power up during factory testing, and then pass whatever things your rig (hope you made a few!) has in mind? Well, then, yes, in fact it does...
Also, and perhaps more importantly, the test rig is a lot simpler and a lot cheaper if you can generally trust manufacturer data. Sure, send off a few samples (likely prototypes with parts from Digikey instead of LCSC) to run extended testing in an environmental chamber with thermal imaging, build an endurance test rig that pushes the button once a second for four weeks to simulate once-daily use for years, whatever you want to do...but after that, if TI says it's good from -40 to +125, you're going to trust them on a lot of the edge cases.
Do 100% testing of the things you can test in-circuit if you can - power it up at room temperature and make sure it works once - but that doesn't mean you get the actual rated performance across all published environmental conditions.
Takes an analog signal from something like light or sound and convert it into a digital signal.
Acronyms introduced in an article should be spelled out at least once please.
On the current project we started with an MCP3208 via SPI. It did the job but only has 8 channels and it's slow (100K samples per sec).
To get something faster we switched to ADS7953. It has 16 channels and runs 10 times faster. It's somewhat more complex to code, and you can only get the highest sample rate if you scan the inputs in a predictable order. But it sure flies.
To me, these chips feel like cars. The ADS7953 is somewhat of a ferrari, whereas the MCP3208 feels like a Toyota, simple to use, unimpressive performance.
I'd love to know the industry background about how these varieties of ADC chips came to be and carved their own space in the world, and how widely they are used (millions? billions?).
I recall reading about a project at CERN to design a 12bit ADC chip that could sample at tens of GHz, maybe 50 or more.
I was perplexed at how they could achieve this.
Turned out it was the same we programmers do. Parallel processing.
They had taken a 12bit SAR unit which ran at like MHz rates, and just cloned it many times. They then had a large analog multiplexer in front to route the signal to the active ADC unit in a round-robin fashion.
That takes a lot of chip real-estate, and the analog muxer had to be carefully designed.
For a simpler approach to speed there is Flash ADCs[1], which kinda brute-force it.
For precision I know multi-slope ADCs[2] are often used.
Sadly I don't know much about the history, and would also love to learn more about it. Bound to be some fascinating stories there.
[1]: https://en.wikipedia.org/wiki/Flash_ADC
[2]: https://www.analog.com/media/en/training-seminars/tutorials/...
What about the AD9226? It only has a single channel but can do up to 65 MSa/s at 12 bits. I bought one as a module for around $12 on AliExpress to experiment with software decoding of analog video. I only run it at 20 MSa/s and only use 8 bits because, funnily enough, the limiting factor is the speed at which I could get the data into my laptop. I connected it to a Raspberry Pi Zero and use the SMI peripheral as described here: https://iosoft.blog/2020/07/16/raspberry-pi-smi/
They need a lot of pins to be toggled. Otherwise they spit out no data.
And a lot of manual stuff means it's super DMA unfriendly. And you need DMA for high-speed stuff.
Single cycle readings defeat the point of sigma delta ADC setups.
You're taking many high noise samples and averaging them over time to get a better picture of the average voltage.
Natively/internally, it runs at 860 samples per second, and you can configure it to provide that data at a lower sample rate at lower noise levels by averaging multiple readings together internally.
q3k•3h ago
Clones tend to be vastly different - different technology node, architecture, die size, etc. - that's because they are generally functional clones, not mask clones.
(also, as a general shoutout to the low tech sandpaper technique for exploratory work, here's a sanded down RP2350 thrown under a clapped out SEM: https://object.ceph-eu.hswaw.net/q3k-personal/484e7b33dbdbd9... https://object.ceph-eu.hswaw.net/q3k-personal/3290eef9b6b9ad... )
cheschire•3h ago
q3k•3h ago
throwup238•3h ago
cheschire•3h ago
throwup238•3h ago
15155•2h ago
Lerc•2h ago
Discarded things tend to get lost. Lost things tend not stay in the Anduin forever.
LeifCarrotson•2h ago
I'll have to put that on a warning label near our non-conforming-product containment shelf!
pinkmuffinere•1h ago
Arubis•1h ago
Hasz•2h ago
IMO, I have mostly seen mislabeling, rebinning, and passing off obvious QC rejects.
example from many years ago: https://www.youtube.com/watch?v=e6DfBuPwAAA
q3k•2h ago
That's the better method of course (results wise), but it's not nearly as accessible, hence my recent evangelism of the virtues of 2000 grit sandpaper.
jacquesm•1h ago
Terr_•1h ago
jacquesm•17m ago
supportengineer•8m ago
jacquesm•3m ago
https://phillipscorp.com/india/phillipsgrinding/phillips-sur...
All you need is a serial port and some G-codes.
throwup238•8m ago
fullstop•1h ago
1. https://righto.com
kens•23m ago
fullstop•18m ago