Starting from how an Ampere used to be defined (N/m, kg/s2)...
- V = Voltage, in Volts, (pre-2019 equal to m2/s)
- Q = Charge, in Coulombs, (pre-2019 equal to kg/s)
*Inertial Surfaces (J·s²)*
∫V dt × ∫Q dt = m² × kg
*Modes of Action (J·s)* V × ∫Q dt = (m²/s) × kg
∫V dt × Q = m² × (kg/s)
*Energy, Patterns of Stress (J)* dV/dt × ∫Q dt = (m²/s²) × kg
V × Q = (m²/s) × (kg/s)
∫V dt × dQ/dt = m² × (kg/s²)
*Power, Waves of Stress (J/s)* dV/dt × Q = (m²/s²) × (kg/s)
V × dQ/dt = (m²/s) × (kg/s²)
*Impulse, Wave Conversions (J/s²)* dV/dt × dQ/dt = (m²/s²) × (kg/s²)
*Spatial Derivatives, Effects on... 'Matter'?*- d(Surface)/dx ~ Transport
- d(Action)/dx ~ Momentum
- d(Energy)/dx ~ Force
- d(Power)/dx ~ ??? Propagation?
- d(Impulse)/dx ~ ??? Conversion?
*Spatial Integrals, Effects on... 'Space'?*
- ∫(Surface)dx ~ Inertial Volume
- ∫(Action)dx ~ kgm3/s
- ∫(Energy)dx ~ kgm3/s2
- ∫(Power)dx ~ kgm3/s3
- ∫(Impulse)dx ~ kgm3/s4
In the wave modes for Power, 'Phase' = dV/dt, Charge = Q, with Heaviside's wave equation `d2(Volts)/dt2 + v2 * d2(Current)/dx2 = d2(Current)/dt2 + v2 * d2(Volts)/dx2` would then.... `d2(Phase)/dt2 + u2 * d2(Charge)/dx2 = d2(Charge)/dt2 + u2 * d2(Phase)/dx2` where v2 = 1 / LC, u2 = 1 / ??