> To manage exceptions, software relies on a key architectural guarantee, precision: that exceptions appear to execute between instructions. However, this definition, dating back over 60 years, fundamentally assumes a sequential programmers model. Modern architectures such as Arm-A with programmer-observable relaxed behaviour make such a naive definition inadequate, and it is unclear exactly what guarantees programmers have on exception entry and exit.
> In this paper, we clarify the concepts needed to discuss exceptions in the relaxed-memory setting – a key aspect of precisely specifying the architectural interface between hardware and software. We explore the basic relaxed behaviour across exception boundaries, and the semantics of external aborts, using Arm-A as a representative modern architecture. We identify an important problem, present yet unexplored for decades: pinning down what it means for exceptions to be precise in a relaxed setting. We describe key phenomena that any definition should account for. We develop an axiomatic model for Arm-A precise exceptions, tooling for axiomatic model execution, and a library of tests. Finally we explore the relaxed semantics of software-generated interrupts, as used in sophisticated programming patterns, and sketch how they too could be modelled.
matt_d•1h ago
DOI: https://doi.org/10.1145/3695053.3731102
Abstract:
> To manage exceptions, software relies on a key architectural guarantee, precision: that exceptions appear to execute between instructions. However, this definition, dating back over 60 years, fundamentally assumes a sequential programmers model. Modern architectures such as Arm-A with programmer-observable relaxed behaviour make such a naive definition inadequate, and it is unclear exactly what guarantees programmers have on exception entry and exit.
> In this paper, we clarify the concepts needed to discuss exceptions in the relaxed-memory setting – a key aspect of precisely specifying the architectural interface between hardware and software. We explore the basic relaxed behaviour across exception boundaries, and the semantics of external aborts, using Arm-A as a representative modern architecture. We identify an important problem, present yet unexplored for decades: pinning down what it means for exceptions to be precise in a relaxed setting. We describe key phenomena that any definition should account for. We develop an axiomatic model for Arm-A precise exceptions, tooling for axiomatic model execution, and a library of tests. Finally we explore the relaxed semantics of software-generated interrupts, as used in sophisticated programming patterns, and sketch how they too could be modelled.