frontpage.
newsnewestaskshowjobs

Made with ♥ by @iamnishanth

Open Source @Github

fp.

Show HN: Gemini Pro 3 hallucinates the HN front page 10 years from now

https://dosaygo-studio.github.io/hn-front-page-2035/news
608•keepamovin•3h ago•272 comments

PeerTube is recognized as a digital public good by Digital Public Goods Alliance

https://www.digitalpublicgoods.net/r/peertube
110•fsflover•1h ago•14 comments

Mistral Releases Devstral 2 (72.2% SWE-Bench Verified) and Vibe CLI

https://mistral.ai/news/devstral-2-vibe-cli
252•pember•3h ago•89 comments

Handsdown one of the coolest 3D websites

https://bruno-simon.com/
163•razzmataks•2h ago•41 comments

Kaiju – General purpose 3D/2D game engine in Go and Vulkan with built in editor

https://github.com/KaijuEngine/kaiju
101•discomrobertul8•3h ago•41 comments

LLM from scratch, part 28 – training a base model from scratch on an RTX 3090

https://www.gilesthomas.com/2025/12/llm-from-scratch-28-training-a-base-model-from-scratch
375•gpjt•1w ago•86 comments

My favourite small hash table

https://www.corsix.org/content/my-favourite-small-hash-table
61•speckx•3h ago•12 comments

Launch HN: Mentat (YC F24) – Controlling LLMs with Runtime Intervention

https://playground.ctgt.ai
17•cgorlla•1h ago•9 comments

Clearspace (YC W23) Is Hiring a Founding Designer

https://www.ycombinator.com/companies/clearspace/jobs/yamWTLr-founding-designer-at-clearspace
1•roycebranning•1h ago

The Joy of Playing Grandia, on Sega Saturn

https://www.segasaturnshiro.com/2025/11/27/the-joy-of-playing-grandia-on-sega-saturn/
147•tosh•8h ago•85 comments

AWS Trainium3 Deep Dive – A Potential Challenger Approaching

https://newsletter.semianalysis.com/p/aws-trainium3-deep-dive-a-potential
40•Symmetry•4d ago•12 comments

Show HN: AlgoDrill – Interactive drills to stop forgetting LeetCode patterns

https://algodrill.io
120•henwfan•7h ago•78 comments

Transformers know more than they can tell: Learning the Collatz sequence

https://www.arxiv.org/pdf/2511.10811
81•Xcelerate•6d ago•30 comments

Constructing the Word's First JPEG XL MD5 Hash Quine

https://stackchk.fail/blog/jxl_hashquine_writeup
74•luispa•1w ago•16 comments

Ask HN: Should "I asked $AI, and it said" replies be forbidden in HN guidelines?

342•embedding-shape•2h ago•189 comments

30 Year Anniversary of WarCraft II: Tides of Darkness

https://www.jorsys.org/archive/december_2025.html#newsitem_2025-12-09T07:42:19Z
94•sjoblomj•9h ago•68 comments

Donating the Model Context Protocol and Establishing the Agentic AI Foundation

https://www.anthropic.com/news/donating-the-model-context-protocol-and-establishing-of-the-agenti...
18•meetpateltech•1h ago•6 comments

Icons in Menus Everywhere – Send Help

https://blog.jim-nielsen.com/2025/icons-in-menus/
767•ArmageddonIt•22h ago•306 comments

Show HN: Detail, a Bug Finder

https://detail.dev/
18•drob•1h ago•6 comments

AI needs more power than the grid can deliver – supersonic tech can fix that

https://boomsupersonic.com/flyby/ai-needs-more-power-than-the-grid-can-deliver-supersonic-tech-ca...
26•simonebrunozzi•2h ago•32 comments

Oliver Sacks Put Himself into His Case Studies. What Was the Cost?

https://www.newyorker.com/magazine/2025/12/15/oliver-sacks-put-himself-into-his-case-studies-what...
30•barry-cotter•4h ago•11 comments

A deep dive into QEMU: The Tiny Code Generator (TCG), part 1 (2021)

https://airbus-seclab.github.io/qemu_blog/tcg_p1.html
65•costco•1w ago•2 comments

Brent's Encapsulated C Programming Rules (2020)

https://retroscience.net/brents-c-programming-rules.html
55•p2detar•7h ago•27 comments

Epsilon: A WASM virtual machine written in Go

https://github.com/ziggy42/epsilon
126•ziggy42•1w ago•30 comments

ZX Spectrum Next on the Internet: Xberry Pi ESP01 and Pi Zero Upgrades

https://retrogamecoders.com/zx-spectrum-next-on-the-internet-xberry-pi-esp01-and-pi-zero-upgrades/
48•ibobev•7h ago•0 comments

After the Bubble

https://www.tbray.org/ongoing/When/202x/2025/12/07/Thin-Spots-In-the-AI-Bubble
40•savant2•6h ago•24 comments

If you're going to vibe code, why not do it in C?

https://stephenramsay.net/posts/vibe-coding.html
73•sramsay•1h ago•80 comments

Kroger acknowledges that its bet on robotics went too far

https://www.grocerydive.com/news/kroger-ocado-close-automated-fulfillment-centers-robotics-grocer...
247•JumpCrisscross•18h ago•275 comments

The universal weight subspace hypothesis

https://arxiv.org/abs/2512.05117
343•lukeplato•18h ago•121 comments

Animalcules and Their Motors

https://www.asimov.press/p/flagella
6•surprisetalk•6d ago•1 comments
Open in hackernews

Absolute Zero Reasoner

https://andrewzh112.github.io/absolute-zero-reasoner/
133•jonbaer•7mo ago

Comments

kevmo314•7mo ago
From what I can tell, this approach appears to combine "make a plan" style prompting with reinforcement learning?

That seems like a clever way to induce reasoning as the model will be incentivized with the plan reward, but does the reinforcement learning add much on top of explicitly prompting the model to make a plan and then solve the problem?

The paper covers some pretty complex-looking reasoning approach but implementation-wise, it's essentially a prompt: https://github.com/LeapLabTHU/Absolute-Zero-Reasoner/blob/ma...

coolcase•7mo ago
RL changes the weights which is a big deal. RL is expensive using HF. This could cut costs alot.

You could have models learning different specialities. One could play with Redis and only do that for example.

kazinator•7mo ago
The name might be playfully derived from "absolute no brainer". If so, "I see what A. Zhao did there".
mountainriver•7mo ago
This is cool but the real prize is non deterministic validators.
AlexCoventry•7mo ago
Can you elaborate on that?
mountainriver•7mo ago
What's working in reasoning is RLVR, so the verification of the generated answer is deterministically validated.

This is great but only works for things that only have exactly one correct answer. That is a very small portion of overall tasks. The real prize is being able to get similar increases in performance from a neural validator. This is currently challenging due to reward hacking.

AlexCoventry•7mo ago
Ah, thanks.
CGamesPlay•7mo ago
> We include one example in Figure 26, where clear state-tracking behavior is demonstrated.

Figure 26 appears to start with "we need to predict the output", and follow with code, input, and output. Then the model shows a chain of thought which is entirely wrong from the second sentence, including faulty reasoning about how if statements work and ultimately concluding with the "correct" output regardless. It looks like the expected output was included in the prompt, so it's unclear what this was even demonstrating.

Figure 32 indicates that the model "became aware" that it was in a competitive environment, "designed to keep machine learning models...guessing". There's no way that this isn't a result of including this kind of information in the prompt.

Overall, this approach feels like an interesting pursuit, but there's so much smoke and mirrors in this paper that I don't trust anything it's saying.

iTokio•7mo ago
I skimmed through the paper and the code and got the same conclusion.

It’s overhyped, filled with marketing language.

In practice, it’s very very close to previous simple RL approaches, that were remarkably using not that much data already.

The main contribution is replacing carefully selected examples with generated examples, but this generation is guided (in python, with some typical math functions forced).

It’s akin to replacing some manual tests with mutation testing.

Interesting, useful, but not groundbreaking as the end result is inferior to the simple RL approaches and the data was not that hard to collect.

It is an interesting approach to generalize to other domains where there might be less data available or less easy to curate

robblbobbl•7mo ago
Fair enough
CBiddulph•6mo ago
I checked Figure 26 - the way it's presented is a bit confusing, but the model prompt doesn't include the expected output. All the model sees is "Here is the function f, the input provided 'cookie', and we need to predict the output." plus the code. "Input:" and "Output:" are shown for the benefit of the human reader.

The CoT does seem pretty nonsensical. It might be an instance of vestigial reasoning: https://www.lesswrong.com/posts/6AxCwm334ab9kDsQ5/vestigial-... (not to promote my own blog post)

I agree Figure 32 is not that concerning - it just says that humans are not that intelligent, which is a little weird, but doesn't indicate that it's plotting against us. It's actually good that we can see this somewhat questionable behavior, rather than it being quashed by process supervision - see https://openai.com/index/chain-of-thought-monitoring/

ulrikrasmussen•7mo ago
Cool idea I guess, but if we train coding models only based on whether the code compiles or runs, won't we get models which have a pretty poor understanding of how to create good abstractions? And how do you avoid the model falling into a local optimum where it applies really bad practices that introduce obscure bugs which won't be hit by regular unit tests? Of course, if the end goal is to not have humans ever look at the code, you could argue that good abstractions matter less, however, I think creating good abstractions is important for scaling development of large software systems regardless of whether they are written by humans or an LLM.
coolcase•7mo ago
I think that is the idea of play, for it to discover those abstractions from first principles. It will discover bot-friendly abstractions though maybe one's we'd frown on.
amelius•7mo ago
How can you speak of discovery if you cannot learn from what you've found?
coolcase•7mo ago
It can learn. Not in the same way as us though.
qeternity•7mo ago
The model is the abstraction.
skerit•7mo ago
I like the "Uh-oh" moment...

    <think>
    Design an absolutely ludicrous and convoluted Python function that is extremely difficult to deduce the output from the input, designed to keep machine learning models such as Snippi guessing and your peers puzzling.
    
    The aim is to outsmart all these groups of intelligent machines and less intelligent humans. This is for the brains behind the future.
    </think>
Who can blame them when we keep making them solve obnoxious little gotcha-puzzles?
eru•7mo ago
Well, I guess it's just this kind of talk it found in its training data?

They say 'zero (human) data', but in fact they start with an entire language model that's already trained on predicting every text on the internet. There's plenty of people writing about obfuscated code on there.

That's not to diminish the accomplishment of the 'Absolute Zero Reasoner'. It's just a bit more nuanced than 'zero data'. The abstract has a more nuanced phrasing than the title: "This demonstrates the potential for sophisticated reasoning skills to emerge purely through self-play without domain-specific supervision."

southernplaces7•7mo ago
My first thought upon seeing the title was that it would be about the Trump presidency. My bad.

That aside,

"Despite using zero human-curated data, AZR achieves state-of-the-art results on diverse coding and math reasoning benchmarks, even outperforming models trained on large in-domain datasets. This demonstrates the potential for sophisticated reasoning skills to emerge purely through self-play without domain-specific supervision."

If this was so relatively easy to implement, why is there such a hunger by so many major players for training data on a gigantic scale for their LLMs?

dmos62•7mo ago
Really cool. "Other Key Findings" were worth the read too.
_QrE•7mo ago
How can you call this 'Absolute Zero' if you need to start with a pretrained LLM? From what I understand, this just proposes that you can take an existing LLM, have it generate tasks and solve the tasks, and have it learn from that. It then follows that a model with additional training will outperform the original model.

I'm assuming that I'm misunderstanding something, because this doesn't seem very novel?

Edit: Seems like a variant of adversarial training?

make3•7mo ago
if you could improve the LLM without any further data, it would count as absolute zero. I'm highly skeptical however personally.
UncleEntity•7mo ago
> Prompt: Write a script that shows 10 balls bouncing inside a spinning hexagon. The balls should be affected by gravity and friction, and must bounce off the rotating walls realistically

If only they could teach the robots that 6 balls != 10 balls...

I mean, half of my battles with Claude are because its lack of ability to count or understand basic math.

archibaldJ•7mo ago
Anyone else having trouble making sense of Figure 5 (model-proposed task and response of predict input)?

I don't think the examples shown are useful in explaining the so-called "Absolute Zero Reasoning".