frontpage.
newsnewestaskshowjobs

Made with ♥ by @iamnishanth

Open Source @Github

fp.

France's homegrown open source online office suite

https://github.com/suitenumerique
369•nar001•3h ago•181 comments

British drivers over 70 to face eye tests every three years

https://www.bbc.com/news/articles/c205nxy0p31o
99•bookofjoe•1h ago•82 comments

Start all of your commands with a comma (2009)

https://rhodesmill.org/brandon/2009/commands-with-comma/
415•theblazehen•2d ago•152 comments

Hoot: Scheme on WebAssembly

https://www.spritely.institute/hoot/
78•AlexeyBrin•4h ago•15 comments

Leisure Suit Larry's Al Lowe on model trains, funny deaths and Disney

https://spillhistorie.no/2026/02/06/interview-with-sierra-veteran-al-lowe/
12•thelok•1h ago•0 comments

OpenCiv3: Open-source, cross-platform reimagining of Civilization III

https://openciv3.org/
770•klaussilveira•19h ago•240 comments

Stories from 25 Years of Software Development

https://susam.net/twenty-five-years-of-computing.html
27•vinhnx•2h ago•3 comments

First Proof

https://arxiv.org/abs/2602.05192
33•samasblack•1h ago•19 comments

Reinforcement Learning from Human Feedback

https://arxiv.org/abs/2504.12501
49•onurkanbkrc•4h ago•3 comments

The Waymo World Model

https://waymo.com/blog/2026/02/the-waymo-world-model-a-new-frontier-for-autonomous-driving-simula...
1020•xnx•1d ago•580 comments

Coding agents have replaced every framework I used

https://blog.alaindichiappari.dev/p/software-engineering-is-back
156•alainrk•4h ago•197 comments

Vocal Guide – belt sing without killing yourself

https://jesperordrup.github.io/vocal-guide/
159•jesperordrup•9h ago•58 comments

Software Factories and the Agentic Moment

https://factory.strongdm.ai/
11•mellosouls•2h ago•10 comments

72M Points of Interest

https://tech.marksblogg.com/overture-places-pois.html
9•marklit•5d ago•0 comments

Unseen Footage of Atari Battlezone Arcade Cabinet Production

https://arcadeblogger.com/2026/02/02/unseen-footage-of-atari-battlezone-cabinet-production/
103•videotopia•4d ago•26 comments

A Fresh Look at IBM 3270 Information Display System

https://www.rs-online.com/designspark/a-fresh-look-at-ibm-3270-information-display-system
17•rbanffy•4d ago•0 comments

StrongDM's AI team build serious software without even looking at the code

https://simonwillison.net/2026/Feb/7/software-factory/
8•simonw•1h ago•3 comments

Making geo joins faster with H3 indexes

https://floedb.ai/blog/how-we-made-geo-joins-400-faster-with-h3-indexes
152•matheusalmeida•2d ago•41 comments

Show HN: Look Ma, No Linux: Shell, App Installer, Vi, Cc on ESP32-S3 / BreezyBox

https://github.com/valdanylchuk/breezydemo
261•isitcontent•19h ago•33 comments

Monty: A minimal, secure Python interpreter written in Rust for use by AI

https://github.com/pydantic/monty
273•dmpetrov•19h ago•145 comments

Ga68, a GNU Algol 68 Compiler

https://fosdem.org/2026/schedule/event/PEXRTN-ga68-intro/
34•matt_d•4d ago•9 comments

Show HN: Kappal – CLI to Run Docker Compose YML on Kubernetes for Local Dev

https://github.com/sandys/kappal
15•sandGorgon•2d ago•3 comments

Hackers (1995) Animated Experience

https://hackers-1995.vercel.app/
545•todsacerdoti•1d ago•262 comments

Sheldon Brown's Bicycle Technical Info

https://www.sheldonbrown.com/
416•ostacke•1d ago•108 comments

Show HN: I spent 4 years building a UI design tool with only the features I use

https://vecti.com
361•vecti•21h ago•161 comments

What Is Ruliology?

https://writings.stephenwolfram.com/2026/01/what-is-ruliology/
61•helloplanets•4d ago•64 comments

Show HN: If you lose your memory, how to regain access to your computer?

https://eljojo.github.io/rememory/
332•eljojo•22h ago•206 comments

An Update on Heroku

https://www.heroku.com/blog/an-update-on-heroku/
456•lstoll•1d ago•298 comments

Microsoft open-sources LiteBox, a security-focused library OS

https://github.com/microsoft/litebox
370•aktau•1d ago•194 comments

Female Asian Elephant Calf Born at the Smithsonian National Zoo

https://www.si.edu/newsdesk/releases/female-asian-elephant-calf-born-smithsonians-national-zoo-an...
61•gmays•14h ago•23 comments
Open in hackernews

Absolute Zero Reasoner

https://andrewzh112.github.io/absolute-zero-reasoner/
133•jonbaer•9mo ago

Comments

kevmo314•9mo ago
From what I can tell, this approach appears to combine "make a plan" style prompting with reinforcement learning?

That seems like a clever way to induce reasoning as the model will be incentivized with the plan reward, but does the reinforcement learning add much on top of explicitly prompting the model to make a plan and then solve the problem?

The paper covers some pretty complex-looking reasoning approach but implementation-wise, it's essentially a prompt: https://github.com/LeapLabTHU/Absolute-Zero-Reasoner/blob/ma...

coolcase•9mo ago
RL changes the weights which is a big deal. RL is expensive using HF. This could cut costs alot.

You could have models learning different specialities. One could play with Redis and only do that for example.

kazinator•9mo ago
The name might be playfully derived from "absolute no brainer". If so, "I see what A. Zhao did there".
mountainriver•9mo ago
This is cool but the real prize is non deterministic validators.
AlexCoventry•9mo ago
Can you elaborate on that?
mountainriver•9mo ago
What's working in reasoning is RLVR, so the verification of the generated answer is deterministically validated.

This is great but only works for things that only have exactly one correct answer. That is a very small portion of overall tasks. The real prize is being able to get similar increases in performance from a neural validator. This is currently challenging due to reward hacking.

AlexCoventry•9mo ago
Ah, thanks.
CGamesPlay•9mo ago
> We include one example in Figure 26, where clear state-tracking behavior is demonstrated.

Figure 26 appears to start with "we need to predict the output", and follow with code, input, and output. Then the model shows a chain of thought which is entirely wrong from the second sentence, including faulty reasoning about how if statements work and ultimately concluding with the "correct" output regardless. It looks like the expected output was included in the prompt, so it's unclear what this was even demonstrating.

Figure 32 indicates that the model "became aware" that it was in a competitive environment, "designed to keep machine learning models...guessing". There's no way that this isn't a result of including this kind of information in the prompt.

Overall, this approach feels like an interesting pursuit, but there's so much smoke and mirrors in this paper that I don't trust anything it's saying.

iTokio•9mo ago
I skimmed through the paper and the code and got the same conclusion.

It’s overhyped, filled with marketing language.

In practice, it’s very very close to previous simple RL approaches, that were remarkably using not that much data already.

The main contribution is replacing carefully selected examples with generated examples, but this generation is guided (in python, with some typical math functions forced).

It’s akin to replacing some manual tests with mutation testing.

Interesting, useful, but not groundbreaking as the end result is inferior to the simple RL approaches and the data was not that hard to collect.

It is an interesting approach to generalize to other domains where there might be less data available or less easy to curate

robblbobbl•9mo ago
Fair enough
CBiddulph•8mo ago
I checked Figure 26 - the way it's presented is a bit confusing, but the model prompt doesn't include the expected output. All the model sees is "Here is the function f, the input provided 'cookie', and we need to predict the output." plus the code. "Input:" and "Output:" are shown for the benefit of the human reader.

The CoT does seem pretty nonsensical. It might be an instance of vestigial reasoning: https://www.lesswrong.com/posts/6AxCwm334ab9kDsQ5/vestigial-... (not to promote my own blog post)

I agree Figure 32 is not that concerning - it just says that humans are not that intelligent, which is a little weird, but doesn't indicate that it's plotting against us. It's actually good that we can see this somewhat questionable behavior, rather than it being quashed by process supervision - see https://openai.com/index/chain-of-thought-monitoring/

ulrikrasmussen•9mo ago
Cool idea I guess, but if we train coding models only based on whether the code compiles or runs, won't we get models which have a pretty poor understanding of how to create good abstractions? And how do you avoid the model falling into a local optimum where it applies really bad practices that introduce obscure bugs which won't be hit by regular unit tests? Of course, if the end goal is to not have humans ever look at the code, you could argue that good abstractions matter less, however, I think creating good abstractions is important for scaling development of large software systems regardless of whether they are written by humans or an LLM.
coolcase•9mo ago
I think that is the idea of play, for it to discover those abstractions from first principles. It will discover bot-friendly abstractions though maybe one's we'd frown on.
amelius•9mo ago
How can you speak of discovery if you cannot learn from what you've found?
coolcase•9mo ago
It can learn. Not in the same way as us though.
qeternity•9mo ago
The model is the abstraction.
skerit•9mo ago
I like the "Uh-oh" moment...

    <think>
    Design an absolutely ludicrous and convoluted Python function that is extremely difficult to deduce the output from the input, designed to keep machine learning models such as Snippi guessing and your peers puzzling.
    
    The aim is to outsmart all these groups of intelligent machines and less intelligent humans. This is for the brains behind the future.
    </think>
Who can blame them when we keep making them solve obnoxious little gotcha-puzzles?
eru•9mo ago
Well, I guess it's just this kind of talk it found in its training data?

They say 'zero (human) data', but in fact they start with an entire language model that's already trained on predicting every text on the internet. There's plenty of people writing about obfuscated code on there.

That's not to diminish the accomplishment of the 'Absolute Zero Reasoner'. It's just a bit more nuanced than 'zero data'. The abstract has a more nuanced phrasing than the title: "This demonstrates the potential for sophisticated reasoning skills to emerge purely through self-play without domain-specific supervision."

southernplaces7•9mo ago
My first thought upon seeing the title was that it would be about the Trump presidency. My bad.

That aside,

"Despite using zero human-curated data, AZR achieves state-of-the-art results on diverse coding and math reasoning benchmarks, even outperforming models trained on large in-domain datasets. This demonstrates the potential for sophisticated reasoning skills to emerge purely through self-play without domain-specific supervision."

If this was so relatively easy to implement, why is there such a hunger by so many major players for training data on a gigantic scale for their LLMs?

dmos62•9mo ago
Really cool. "Other Key Findings" were worth the read too.
_QrE•9mo ago
How can you call this 'Absolute Zero' if you need to start with a pretrained LLM? From what I understand, this just proposes that you can take an existing LLM, have it generate tasks and solve the tasks, and have it learn from that. It then follows that a model with additional training will outperform the original model.

I'm assuming that I'm misunderstanding something, because this doesn't seem very novel?

Edit: Seems like a variant of adversarial training?

make3•9mo ago
if you could improve the LLM without any further data, it would count as absolute zero. I'm highly skeptical however personally.
UncleEntity•9mo ago
> Prompt: Write a script that shows 10 balls bouncing inside a spinning hexagon. The balls should be affected by gravity and friction, and must bounce off the rotating walls realistically

If only they could teach the robots that 6 balls != 10 balls...

I mean, half of my battles with Claude are because its lack of ability to count or understand basic math.

archibaldJ•9mo ago
Anyone else having trouble making sense of Figure 5 (model-proposed task and response of predict input)?

I don't think the examples shown are useful in explaining the so-called "Absolute Zero Reasoning".