frontpage.
newsnewestaskshowjobs

Made with ♥ by @iamnishanth

Open Source @Github

fp.

Start all of your commands with a comma (2009)

https://rhodesmill.org/brandon/2009/commands-with-comma/
258•theblazehen•2d ago•86 comments

Hoot: Scheme on WebAssembly

https://www.spritely.institute/hoot/
26•AlexeyBrin•1h ago•3 comments

OpenCiv3: Open-source, cross-platform reimagining of Civilization III

https://openciv3.org/
706•klaussilveira•15h ago•206 comments

The Waymo World Model

https://waymo.com/blog/2026/02/the-waymo-world-model-a-new-frontier-for-autonomous-driving-simula...
969•xnx•21h ago•558 comments

Vocal Guide – belt sing without killing yourself

https://jesperordrup.github.io/vocal-guide/
69•jesperordrup•6h ago•31 comments

Reinforcement Learning from Human Feedback

https://arxiv.org/abs/2504.12501
7•onurkanbkrc•48m ago•0 comments

Making geo joins faster with H3 indexes

https://floedb.ai/blog/how-we-made-geo-joins-400-faster-with-h3-indexes
135•matheusalmeida•2d ago•35 comments

Where did all the starships go?

https://www.datawrapper.de/blog/science-fiction-decline
45•speckx•4d ago•36 comments

Unseen Footage of Atari Battlezone Arcade Cabinet Production

https://arcadeblogger.com/2026/02/02/unseen-footage-of-atari-battlezone-cabinet-production/
68•videotopia•4d ago•7 comments

Welcome to the Room – A lesson in leadership by Satya Nadella

https://www.jsnover.com/blog/2026/02/01/welcome-to-the-room/
39•kaonwarb•3d ago•30 comments

Ga68, a GNU Algol 68 Compiler

https://fosdem.org/2026/schedule/event/PEXRTN-ga68-intro/
13•matt_d•3d ago•2 comments

What Is Ruliology?

https://writings.stephenwolfram.com/2026/01/what-is-ruliology/
45•helloplanets•4d ago•46 comments

Show HN: Look Ma, No Linux: Shell, App Installer, Vi, Cc on ESP32-S3 / BreezyBox

https://github.com/valdanylchuk/breezydemo
240•isitcontent•16h ago•26 comments

Monty: A minimal, secure Python interpreter written in Rust for use by AI

https://github.com/pydantic/monty
238•dmpetrov•16h ago•127 comments

Show HN: I spent 4 years building a UI design tool with only the features I use

https://vecti.com
340•vecti•18h ago•149 comments

Hackers (1995) Animated Experience

https://hackers-1995.vercel.app/
506•todsacerdoti•23h ago•248 comments

Sheldon Brown's Bicycle Technical Info

https://www.sheldonbrown.com/
389•ostacke•22h ago•98 comments

Show HN: If you lose your memory, how to regain access to your computer?

https://eljojo.github.io/rememory/
304•eljojo•18h ago•188 comments

Microsoft open-sources LiteBox, a security-focused library OS

https://github.com/microsoft/litebox
361•aktau•22h ago•186 comments

An Update on Heroku

https://www.heroku.com/blog/an-update-on-heroku/
428•lstoll•22h ago•284 comments

Cross-Region MSK Replication: K2K vs. MirrorMaker2

https://medium.com/lensesio/cross-region-msk-replication-a-comprehensive-performance-comparison-o...
3•andmarios•4d ago•1 comments

PC Floppy Copy Protection: Vault Prolok

https://martypc.blogspot.com/2024/09/pc-floppy-copy-protection-vault-prolok.html
71•kmm•5d ago•10 comments

Was Benoit Mandelbrot a hedgehog or a fox?

https://arxiv.org/abs/2602.01122
24•bikenaga•3d ago•11 comments

Dark Alley Mathematics

https://blog.szczepan.org/blog/three-points/
96•quibono•4d ago•22 comments

The AI boom is causing shortages everywhere else

https://www.washingtonpost.com/technology/2026/02/07/ai-spending-economy-shortages/
26•1vuio0pswjnm7•2h ago•16 comments

How to effectively write quality code with AI

https://heidenstedt.org/posts/2026/how-to-effectively-write-quality-code-with-ai/
271•i5heu•18h ago•219 comments

Delimited Continuations vs. Lwt for Threads

https://mirageos.org/blog/delimcc-vs-lwt
34•romes•4d ago•3 comments

I now assume that all ads on Apple news are scams

https://kirkville.com/i-now-assume-that-all-ads-on-apple-news-are-scams/
1079•cdrnsf•1d ago•462 comments

Introducing the Developer Knowledge API and MCP Server

https://developers.googleblog.com/introducing-the-developer-knowledge-api-and-mcp-server/
64•gfortaine•13h ago•30 comments

Understanding Neural Network, Visually

https://visualrambling.space/neural-network/
306•surprisetalk•3d ago•44 comments
Open in hackernews

Show HN: Arch-Router – 1.5B model for LLM routing by preferences, not benchmarks

66•adilhafeez•7mo ago
Hi HN — we're the team behind Arch (https://github.com/katanemo/archgw), an open-source proxy for LLMs written in Rust. Today we're releasing Arch-Router (https://huggingface.co/katanemo/Arch-Router-1.5B), a 1.5B router model for preference-based routing, now integrated into the proxy. As teams integrate multiple LLMs - each with different strengths, styles, or cost/latency profiles — routing the right prompt to the right model becomes a critical part of the application design. But it's still an open problem. Most routing systems fall into two camps:

- Embedding-based routers use intent classifiers — label a prompt as “support,” “SQL,” or “math,” then route to a matching model. This works for simple tasks but breaks down in real conversations. Users shift topics mid-conversation, task boundaries blur, and product changes require retraining classifiers.

- Performance-based routers pick models based on benchmarks like MMLU or MT-Bench, or based on latency or cost curves. But benchmarks often miss what matters in production: domain-specific quality or subjective preferences like “Will legal accept this clause?”

Arch-Router takes a different approach: route by preferences written in plain language. You write rules like “contract clauses → GPT-4o” or “quick travel tips → Gemini Flash.” The router maps the prompt (and conversation context) to those rules using a lightweight 1.5B autoregressive model. No retraining, no fragile if/else chains. We built this with input from teams at Twilio and Atlassian. It handles intent drift, supports multi-turn conversations, and lets you swap in or out models with a one-line change to the routing policy. Full details are in our paper (https://arxiv.org/abs/2506.16655), but here's a snapshot:

Specs:

- 1.5B params — runs on a single GPU (or CPU for testing)

- No retraining needed — point it at any mix of LLMs

- Cost and latency aware — route heavy tasks to expensive models, light tasks to faster/cheaper ones

- Outperforms larger closed models on our conversational routing benchmarks (details in the paper)

Links:

- Arch Proxy (open source): https://github.com/katanemo/archgw

- Model + code: https://huggingface.co/katanemo/Arch-Router-1.5B

- Paper: https://arxiv.org/abs/2506.16655

Comments

sparacha•7mo ago
Hi HN! I am one of the co-authors of the paper. If there are any questions about our approach, I would love to answer them.
tmaly•7mo ago
do you think it would be possible to quantize this model and still get good results?
sparacha•7mo ago
yes - we have already published a quantized version here: https://huggingface.co/katanemo/Arch-Router-1.5B.gguf. The performance difference with a quant version is negligible. I'll run another analysis and update the thread shortly
sparacha•7mo ago
Overall performance degrades from 93.17 -> 92.99 with a quantized version
jedisct1•7mo ago
I tried to use it to rate the difficulty level of coding tasks (for InferSwitch, an LLM router), but it performed far worse than Qwen2.5-Coder-7B (but sure, 1.5B vs 7B)
sparacha•7mo ago
Can you share more about your evaluation setup? I would love to see the specific usage pattern as we have tested our model against smaller LLMs and foundational models and our results show things differently. Of course, routing policies should follow best practices here: https://docs.archgw.com/guides/llm_router.html

Nonetheless, super curious to learn more and see what we may be able to improve. This is technically not a classifier model - its a usage prediction model (feels like a classifier, but not quite in terms of intended usage)

cotran2•7mo ago
According to the post, the model is fine-tuned for routing to different tasks/domains. Classifying difficulty level is probably not the intended use case.
jgant13•7mo ago
Solid. Can you show us when to use this vs. say OpenRouter? The performance seems strong for sure. TIA.
sparacha•7mo ago
Arch is developer friendly, but designed for enterprise-grade customers in mind. The core contributors of Envoy redesigned the proxy substrate to handle prompts - offering something that is battle tested in terms of resiliency, speed, and deployments. Second, OpenRouter offers choice of models, but dynamically routing to LLMs based on user-defined usage policies is uniquely available in Arch. Hope that helps
_nh_•7mo ago
How do you compare with RouteLLM?
sparacha•7mo ago
RouteLLM is essentially a benchmark-driven approach. Their framework chooses between a weak and a strong model and helps developers optimize for a metric called APGR (Average Performance Gap Recovered) — a measure of how much of the stronger model’s performance can be recovered when routing some queries to the weaker, cheaper model. However, their routing models are trained to maximize performance on public benchmarks like MMLU, BBH, or MT-Bench. These benchmarks may not capture subjective, domain-specific quality signals that surface in practice.

Arch-Router takes a different approach. Instead of focusing benchmark scores, we lets developers define routing policies in plain language based on their preferences — like “contract analysis → GPT-4o” or “lightweight brainstorming → Gemini Flash.” Our 1.5B model learns to map prompts (along with conversational context) to these policies, enabling routing decisions that align with real-world expectations, not abstract leaderboards. Also our approach doesn't require router model retraining when new LLMs are swapped in or when preferences change.

Hope this helps.

cotran2•7mo ago
There is a case study comparing with RouteLLM in the appendix.
pseudosavant•7mo ago
Not that LLMs are terribly latency sensitive (you wait on a lot of tokens), but what kind of latency impact does this have on requests that go through the proxy?
cotran2•7mo ago
The model is compact 1.5B, most GPUs can serve it locally and has <100ms e2e latency. For L40s, its 50ms.
adilhafeez•7mo ago
Short answer is latency impact is very minimal.

We use envoy as request handler which forwards request to local service written in rust. Envoy is proven to be high performance, low latency and highly efficient on request handling. If I have to put a number it would be in single digit ms per request. I will have more detailed benchmark in the coming days.