"While cheaper than CZT detectors, NaI detectors are bulky and produce blurrier images — like taking a photo through a foggy window."
I'm constantly amazed at what these articles do not show. Like if we have an example of a foggy window image and one from CZT and now one from this new sensor, why not show an example of each? A picture is worth a 1,000 words after all, so not including them really does the reader a disservice when reading these articles.
mhb•1h ago
From this, it sounds like it hasn't been integrated into an imaging device yet:
"Record energy resolutions are achieved as 2.5% at 141 keV and 1.0% at 662 keV. Single photon imaging with single point and line 99mTc γ-ray sources showcases the high sensitivity of 0.13%~0.21% cps/Bq. Phantom imaging distinctly delineates individual column sources spaced 7 mm apart, indicative of an impressive spatial resolution of 3.2 mm. These findings lay the groundwork for integrating perovskite detectors into nuclear medicine γ-ray imaging systems, offering a balance of cost-effectiveness and superior performance."
dylan604•2h ago
I'm constantly amazed at what these articles do not show. Like if we have an example of a foggy window image and one from CZT and now one from this new sensor, why not show an example of each? A picture is worth a 1,000 words after all, so not including them really does the reader a disservice when reading these articles.
mhb•1h ago
"Record energy resolutions are achieved as 2.5% at 141 keV and 1.0% at 662 keV. Single photon imaging with single point and line 99mTc γ-ray sources showcases the high sensitivity of 0.13%~0.21% cps/Bq. Phantom imaging distinctly delineates individual column sources spaced 7 mm apart, indicative of an impressive spatial resolution of 3.2 mm. These findings lay the groundwork for integrating perovskite detectors into nuclear medicine γ-ray imaging systems, offering a balance of cost-effectiveness and superior performance."
https://www.nature.com/articles/s41467-025-63400-7