The Curry-Howard correspondence, using dependent type system to have "proofs" be equivalent to "types", is powerful, but it can be really confusing. From a human point of view, there is a huge difference between "Your proof is wrong" and "You wrote a statement that fails typechecking".
Intuitively, when you make an error with types, it should be something fairly trivial that you just read the error and fix it up. When you make an error in a proof, it's understandable if it's very complicated and requires thought to fix. The natural UI is different.
So I agree with the author that the greatest benefit of Lean is not its typesystem per se, but its community. Specifically the fact that Lean's library of mathematics, mathlib, is organized like an open source community with pull requests. Whereas Isabelle's library of mathematics, the AFP, is organized like a scientific journal with referees.
I'm working on a dependent type system at the moment for a new theorem prover - Acorn, at https://acornprover.org - and my hope is to combine the good points of both Lean and Isabelle. It's nice that Lean has the power to cleanly express the simple dependent types that mathematicians often use, like vector spaces or quotients. But if you use dependent types too much then it does get complicated to debug what's happening.
To clarify, as long as 5 and 10 are constants, this is entirely possible in C++ and Rust^1, neither of which are dependently typed (or at most are dependently typed in a very weak sense). In general, neither can ensure at compile time that an index only known at runtime is in bounds, even if the bounds themselves are statically known. A proper dependently-typed language can prevent runtime out-of-bound errors even if neither the indices nor the bounds are known at type check time.
^1 And weakly in many other languages whose builtin array types have compile-time bounds. But C++ and Rust let user-defined generic types abstract over constant values.
> A proper dependently-typed language can prevent runtime out-of-bound errors even if neither the indices nor the bounds are known at type check time.
Yes, but the way this is done is by threading a proof "this index is within bounds" throughout the code. At runtime (e.g. within 'extracted' code, if you're using common dependently-typed systems), this simply amounts to relying on a kind of capability or ghost 'token' that attests to the validity of that code. You "manufacture" the capability as part of an explicit runtime check when needed (e.g. if the "index" or "bounds" come from user input) and simply rely on it as part of the code.
It seems to me that dependent typing strictly requires going from runtime values to types.
(You can parametrize types by runtime values in c++ in a trivial sense, by enumerating a finite set a compile time and then picking the correct type at runtime according to a runtime value, still I don't think it counts as the set of valid types would be finite).
Eigen::Matrix<float, 10, 5>
I just really want it in Python because that's where I do most of my matrix manipulation nowadays. I guess you also would really like it to handle non-constants. It would be nice if these complicated library functions like
torch.nn.MultiheadAttention(embed_dim, num_heads, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None, batch_first=False, device=None, dtype=None)
would actually typecheck that kdim and vdim are correct, and ensure that I correctly pass a K x V matrix and not a V x K one.
looks like this:
def batch_outer_product(x: TensorType["batch", "x_channels"],
y: TensorType["batch", "y_channels"]
) -> TensorType["batch", "x_channels", "y_channels"]:
return x.unsqueeze(-1) * y.unsqueeze(-2)
There's also https://github.com/thomasahle/tensorgrad which uses sympy for "axis" dimension variables: b, x, y = sp.symbols("b x y")
X = tg.Variable("X", b, x)
Y = tg.Variable("Y", b, y)
W = tg.Variable("W", x, y)
XWmY = X @ W - YI learnt a lot the first time around, so the newer one is much better :)
Often in dependently-types languages one also tries to prove at compile-time that the dynamic index is inside the dynamic bound at run-time, but this depends.
int foo(int i) {
int bar[4] = { 1, 2, 3, 4 };
return bar[i]
}
The type checker would demand a proof that i is in bounds, for example int foo(int i) {
int bar[4] = { 1, 2, 3, 4 };
if i < 4
return bar[i]
else
return 0
}
In languages with an Option type this could of course be written without dependent types in a way that's still correct by construction, for example Rust: fn foo(i: 32) -> i32 {
let bar = [1, 2, 3, 4];
bar.get(i) // returns Option<i32>, not a raw i32
.unwrap_or(0) // provide a default, now we always have an i32
}
But ultimately, memory safety here is only guaranteed by the library, not by the type system.Implementing bounds checking that returns option types (which can also implement in C) is not exactly the same thing. But dependent typing can be more elegant - as it is here.
Yeah, this seems like matrixes might not be a great first example for explaining the value of dependent types. It's fully possible to define a matrix that uses a generic type as the index for each dimension that doesn't allow expressing values outside the expected range; it would just be fairly cumbersome, and the usual issues would creep back in if you needed to go from "normal" integers back to indexes (although not if you only needed to convert the indexes to normal integers).
I find that the potential utility of dependent types is more clear when thinking about types where the "dimensions" are mutable, which isn't usually how I'd expect most people to use matrixes. Even a simple example like "the current length of a list can be part of the type, so you define a method to get the first element only on non-empty lists rather than needing them to return an optional value". While you could sort of implement this in a similar as described above with a custom integer-like type, the limitations of this kind of approach for a theoretically unbounded length are a lot more apparent than a matrix with constant-sized dimensions.
(defparameter *test-array*
(make-array '(10 5)
:element-type 'Float
:initial-element 0.0))
(typep *test-array* '(Array Float (10 5)))
And the type check will return true.Does that check run at compile time?
I remember being able to use telescopes [1] in Haskell long time ago, around 2012 or so.
[1] https://www.pls-lab.org/en/telescope
Haskell was not and is not properly dependently typed.
Do you mean proposition as types? And proof has a program?
Or do you see it at somewhat a higher order, since values are proof for a type, and types can perhaps be proof at a higher level if they are first class citizen in the language?
(Which makes me think that dependent types is really a stairway between two type systems?)
Just wondering, since I had never personally seen it described in that fashion.
Other question: What is the function and runtime treatment of dependent types? Can they be instantiated on the spot by runtime values? A bit like defining/declaring functions that return arrays of runtime-known length? Does it involve two aspects of type checking? compile and runtime? Implementation-wise, doesn't it require too many indirections?
https://github.com/AKST/analysis-notebook/blob/main/lib/base... (Line 38)
It type checks, but I haven’t gotten a lot of mileage out of this (so far at least). I did something similar for vectors, which has been useful for when I destructure the elements, and it preserves that through vector operations.
https://github.com/AKST/analysis-notebook/blob/777acf427c65c...
The same is actually applies true for matrices, I wrote the multiplication to carry the new size into the output type
https://github.com/AKST/analysis-notebook/blob/777acf427c65c...
That said I mostly use this for square matrixes in web GL so you’re mostly working with square matrixes.
As an aside, this source is from a toy project largely more for leisure and fun, I don’t know if something like this would be suitable for a larger more data oriented project (at least in trend of how I represent data here).
But the real challenge is deciding how much of Python's semantics to preserve. Once you start enforcing constraints that depend on values, a lot of idiomatic dynamic behavior stops making sense. Curious what ways there are to work around this, but I think that's for a person better at Python than I :)
BTW, here's a "discussion paper" by Paulson and Leslie Lamport about typing in specification laguages from 1999: https://www.cl.cam.ac.uk/~lp15/papers/Reports/lamport-paulso.... Paulson represents the "pro-type" view, but note that since that paper was written, there have been developments in mechanised theorem proving of untyped formalisms, including in Lamport's own (TLA+).
More like “No free lunch.”
You can gain advantages, e.g. more complete compile time guarantees, but at disadvantages, e.g. greater program complexity, or longer compile times.
The subjectivity is whether the tradeoff is “worth” it.
See here for a summary of the many results of the author and team's research project on formalization:
https://www.cl.cam.ac.uk/~lp15/Grants/Alexandria/
Especially interesting for me is the work on formalizing quantum computing algorithms and theorems (open access):
https://link.springer.com/article/10.1007/s10817-020-09584-7
The most unique/useful applications of it in production are based on combining dependent types with database/graph queries as a means. This enables you to take something like RDF which is neat in a lot of ways but has a lot of limitations, add typing and logic to the queries, in order to generally reimagine how you think about querying databases.
For those interested in exploring this space from a "I'd like to build something real with this", I'd strongly recommend checking out TypeDB (typedb.com). It's been in development for about a decade, is faster than MongoDB for vast swaths of things, and is one of the most ergonomic frameworks we've found to designing complex data applications (Phosphor's core is similar in many ways to Palantir's ontology concept). We went into it assuming that we were exploring a brand new technology, and have found it to work pretty comprehensively for all kinds of production settings.
"We build non-dilutive growth engines for industrial and climate technology companies by creating high quality development pipelines for institutional capital."
When you drive past a solar project on the side of the road, you see the solar technology producing energy. But in order for a bank to fund $100M to construct the project, it has to be "developed" as if it were a long-term financial product across 15 or so major agreements (power offtake, lease agreement, property tax negotiations, etc). The fragmentation of tools and context among all the various counterparties involved to pull this sort of thing together into a creditworthy package for funding is enormously inefficient and as a result, processes which should be parallelize-able can't be parallelized, creating large amounts of risk into the project development process.
While all kinds of asset class-specific tools exist for solar or real estate or whatever, most of them are extremely limited in function because almost of those things abstract down into a narrative that you're communicating to a given party at any given time (including your own investment committee), and a vast swath of factual information represented by deterministic financial calculations and hundreds if not thousands of pages of legal documentation.
We build technology to centralize/coordinate/version control these workflows in order to unlock an order of magnitude more efficiency across that entire process in its totality. But instead of selling software, we sell those development + financing outcomes (which is where _all_ of the value is in this space), because we're actually able to scale that work far more effectively than anyone else right now.
I would have liked to read more about Lean's alleged performance issues, and the issues around intentional equality. For the latter, I understand one can run into the need for heterogeneous equality (https://lean-lang.org/doc/reference/latest/Basic-Proposition...) when types are propositionally equal, but not definitionally equal. It has been some time I worked seriously in a dependently-typed language, but I recall coming to the conclusion that dependent types are best used as little as possible, for exactly this reason. If something may be stated as a theorem after the fact instead of putting it in the type, that was my preference.
Certainly there is something strongly aesthetically appealing about dependent type theory. The unification of programs and proofs and the natural emergence of independent proof objects. I am open to the idea that overly-dogmatic insistence on a type-theoretic basis to a theorem prover could lead to pragmatic issues, but I'd need to see more examples to be convinced there is a better foundation.
Anyway, I agree with Dr. Paulson's point that dependent types aren't necessary to verify interesting systems. He talked more of pure mathematics, but I am more interested in software verification. I work heavily in ACL2 which, not only does it not have dependent types, it doesn't have static typing at all! It is, however, also a first order logic and the both of these facts can sometimes be frustrating. Various libraries have been introduced to simulate typing and higher-ordered reasoning.
You get into types at the end. And sure, we don't need static types. Just like, outside of verification, we don't need garbage collection, or bounds checking, or even loops. But are the features useful? What takes us to the goal faster? And remember that also changes depending on who is doing the tasks. A lot of differents in tooling selection, across all kinds of work, come down to preference, not general utility, and they sure have nothing to do with necessity
Anyway, for what its worth, I generally agree that static typing is preferable. It is just a little more complicated in the context of theorem provers (as opposed to general-purpose, non-verification programming languages) where, for provers not based on type theory, propositions and proof obligations can be used where we might otherwise use types. This can be nice (generally more flexible, e.g. opportunities for non-tagged sums, easy "subtyping"), but also can be a downside (sometimes significant work reproducing what you get "for free" from a type system).
I believe proof by reflection relies on proof objects? Georges Gonthier's proof of the four-colour theorem crucially uses proof by reflection.
When I used to do F# for a living, I was really pushing for using F*, but it was impossible to get any buy-in from coworkers because the learning curve was comparatively steep. I probably should have pushed a bit more, but I figured that I'd potentially have more success trying to push people to use TLA+ (though that was also unsuccessful).
That was unsuccessful as well, and I've come to the (admittedly very cynical conclusion) that software engineers, generally speaking, will never learn anything new if it involves "math" in any way, shape, or form. Once I realized that, it became much easier to lower my expectations of my coworkers.
fluffypony•7h ago
If you need finely indexed invariants, sure, reach for DT. For the other 95%, HOL plus type classes and locales, backed by a small kernel and big libraries, will get you to production faster and with fewer regrets. Milner's LCF insight still pays the bills. And yes, croissants are delicious, but optional axioms are a risky breakfast.