frontpage.
newsnewestaskshowjobs

Made with ♥ by @iamnishanth

Open Source @Github

fp.

OpenCiv3: Open-source, cross-platform reimagining of Civilization III

https://openciv3.org/
624•klaussilveira•12h ago•182 comments

The Waymo World Model

https://waymo.com/blog/2026/02/the-waymo-world-model-a-new-frontier-for-autonomous-driving-simula...
926•xnx•18h ago•548 comments

What Is Ruliology?

https://writings.stephenwolfram.com/2026/01/what-is-ruliology/
32•helloplanets•4d ago•24 comments

How we made geo joins 400× faster with H3 indexes

https://floedb.ai/blog/how-we-made-geo-joins-400-faster-with-h3-indexes
109•matheusalmeida•1d ago•27 comments

Jeffrey Snover: "Welcome to the Room"

https://www.jsnover.com/blog/2026/02/01/welcome-to-the-room/
9•kaonwarb•3d ago•7 comments

Unseen Footage of Atari Battlezone Arcade Cabinet Production

https://arcadeblogger.com/2026/02/02/unseen-footage-of-atari-battlezone-cabinet-production/
40•videotopia•4d ago•1 comments

Show HN: Look Ma, No Linux: Shell, App Installer, Vi, Cc on ESP32-S3 / BreezyBox

https://github.com/valdanylchuk/breezydemo
219•isitcontent•13h ago•25 comments

Monty: A minimal, secure Python interpreter written in Rust for use by AI

https://github.com/pydantic/monty
210•dmpetrov•13h ago•103 comments

Show HN: I spent 4 years building a UI design tool with only the features I use

https://vecti.com
322•vecti•15h ago•143 comments

Sheldon Brown's Bicycle Technical Info

https://www.sheldonbrown.com/
370•ostacke•18h ago•94 comments

Microsoft open-sources LiteBox, a security-focused library OS

https://github.com/microsoft/litebox
358•aktau•19h ago•181 comments

Hackers (1995) Animated Experience

https://hackers-1995.vercel.app/
477•todsacerdoti•20h ago•232 comments

Show HN: If you lose your memory, how to regain access to your computer?

https://eljojo.github.io/rememory/
272•eljojo•15h ago•160 comments

An Update on Heroku

https://www.heroku.com/blog/an-update-on-heroku/
402•lstoll•19h ago•271 comments

Dark Alley Mathematics

https://blog.szczepan.org/blog/three-points/
85•quibono•4d ago•20 comments

Vocal Guide – belt sing without killing yourself

https://jesperordrup.github.io/vocal-guide/
14•jesperordrup•2h ago•6 comments

Delimited Continuations vs. Lwt for Threads

https://mirageos.org/blog/delimcc-vs-lwt
25•romes•4d ago•3 comments

PC Floppy Copy Protection: Vault Prolok

https://martypc.blogspot.com/2024/09/pc-floppy-copy-protection-vault-prolok.html
56•kmm•5d ago•3 comments

Start all of your commands with a comma

https://rhodesmill.org/brandon/2009/commands-with-comma/
3•theblazehen•2d ago•0 comments

Was Benoit Mandelbrot a hedgehog or a fox?

https://arxiv.org/abs/2602.01122
12•bikenaga•3d ago•2 comments

How to effectively write quality code with AI

https://heidenstedt.org/posts/2026/how-to-effectively-write-quality-code-with-ai/
244•i5heu•15h ago•188 comments

Introducing the Developer Knowledge API and MCP Server

https://developers.googleblog.com/introducing-the-developer-knowledge-api-and-mcp-server/
52•gfortaine•10h ago•21 comments

I spent 5 years in DevOps – Solutions engineering gave me what I was missing

https://infisical.com/blog/devops-to-solutions-engineering
140•vmatsiiako•17h ago•63 comments

Understanding Neural Network, Visually

https://visualrambling.space/neural-network/
280•surprisetalk•3d ago•37 comments

I now assume that all ads on Apple news are scams

https://kirkville.com/i-now-assume-that-all-ads-on-apple-news-are-scams/
1058•cdrnsf•22h ago•433 comments

Why I Joined OpenAI

https://www.brendangregg.com/blog/2026-02-07/why-i-joined-openai.html
132•SerCe•8h ago•117 comments

Show HN: R3forth, a ColorForth-inspired language with a tiny VM

https://github.com/phreda4/r3
70•phreda4•12h ago•14 comments

Female Asian Elephant Calf Born at the Smithsonian National Zoo

https://www.si.edu/newsdesk/releases/female-asian-elephant-calf-born-smithsonians-national-zoo-an...
28•gmays•8h ago•11 comments

Learning from context is harder than we thought

https://hy.tencent.com/research/100025?langVersion=en
176•limoce•3d ago•96 comments

FORTH? Really!?

https://rescrv.net/w/2026/02/06/associative
63•rescrv•20h ago•22 comments
Open in hackernews

Show HN: Tiny Diffusion – A character-level text diffusion model from scratch

https://github.com/nathan-barry/tiny-diffusion
172•nathan-barry•2mo ago
This is a character-level language diffusion model for text generation.

The model is a modified version of Nanochat's GPT implementation and is trained on Tiny Shakespeare!

It is only 10.7 million parameters, so you can try it out locally.

Comments

yugretcx•2mo ago
Why do these text diffusion demos always look like the number of allowed tokens is fixed for a specific unfilled region?

Is this the case?

Ie. if the region only has four tokens(here characters) but calculates the best word is “forget” does it just abandon the best fit or truncate it to fit?

Are there text diffusion models with lax infill directives?

rand0mwalk•2mo ago
Tokens start as a special [MASK] token. Then as the diffusion process runs they are "unmasked" i.e. sampled.

So yes, you define a sequence of [MASK] tokens with some length ahead of time.

In practice, if a model wants to write a shorter sequence, it'll just fill the remaining tokens with empty content. If it wants to write a longer sequence, you'll have to identify this and extend the sequence with more [MASK] tokens. This is typically obvious since there's no "end of sequence" token present if the model wants to generate more.

nathan-barry•2mo ago
Yes, this is the case. During training, the model will get a sequence of text (ex, 512 tokens long) with a percentage of them masked out (with a special <MASK> token). It learns how to unmask those tokens to construct the original text.

In the case that you mentioned, if we had 4 <MASK> tokens in a row, all we are doing for decoding is predicting what those 4 tokens should be.

Generally, this does not seem to be a significant problem, as there are usually multiple ways to express an idea in varying lengths. Also, with confidence-aware parallel decoding, it can usually avoid the scenario you mentioned, as focusing on decoding the highest confident tokens will generally avoid such scenarios with a well trained model.

simonw•2mo ago
This is really neat.

I noticed the diffusion-process.py demo was using matplotlib in a window, but I figured it would be cute if it used a terminal UI instead - so I had Claude Code convert it to use curses. Code and demo GIF here: https://gist.github.com/simonw/9033ebd8dd17b4c0ad101ddda7a54...

Majromax•2mo ago
The basic MLP block in this model uses a ReLU^2 activation function (x <- ReLU(x)^2). That seems to be copied from the nanochat project, and it's not present in nanoGPT. Is there some documentation on the choice of this activation function?
throwaway2027•2mo ago
Isn't it because ReLU is cheap and ^2 is squared loss?
kouteiheika•2mo ago
When it comes to compute cost the choice of activation function makes little difference nowadays (and it can often be fused with whatever operation comes before it, which makes it effectively free).

The real reason is simple: it was inherited.

The relu^2 was used in the nanogpt speedrun[1] because it produced the best empirical results, then Andrej based his nanochat on the nanogpt speedrun without changing the activation function, and then this project was based on nanochat.

[1] -- https://github.com/KellerJordan/modded-nanogpt

macleginn•2mo ago
There has been some experimentation with the use of ReLU^2 in language models in recent years, e.g., here: https://proceedings.neurips.cc/paper_files/paper/2021/file/2...
mlmonkey•2mo ago
I'm curious: has there been any work done on generating embedding vectors instead of discrete tokens via diffusion? What would that look like? Please point me to some references. Thanks!
volodia•2mo ago
There is also this one that was released in October: https://github.com/kuleshov/char-mdlm
embedding-shape•2mo ago
Fun project, easy to understand and nice looking results, everything one could ask for! I played around with it locally, did some optimizations of low hanging fruits without making it much more complicated, and was gonna send over a PR. But then I noticed there is no license attached to the project. What are your plans regarding the licensing for this?
nathan-barry•2mo ago
Hey, I’ll add the MIT licenses later today!
tell_me_whai•2mo ago
Looks fun, thanks for sharing. I see you're implementing game of life sampling, what's the reasoning for using this logic?
gdiamos•2mo ago
One year later and there is still no inference engine for diffusion LLMs

Students looking for a project to break into AI - please!

nathan-barry•2mo ago
Actually NVIDIA made one earlier this year, check out their Fast-dLLM paper
gdiamos•2mo ago
Thanks I’ll check it out!
gdiamos•2mo ago
Did I miss something? https://github.com/NVlabs/Fast-dLLM/blob/main/llada/chat.py

That’s inference code, but where is the high perf web server?

tough•2mo ago
training inspired on nanochat for diffusion models: https://github.com/ZHZisZZ/dllm

now someone needs to make it work with vllm or something

doppelgunner•2mo ago
This is impressive. Can it run on mobile?
aa_y_ush•2mo ago
this is so so awesome.