frontpage.
newsnewestaskshowjobs

Made with ♥ by @iamnishanth

Open Source @Github

fp.

Open in hackernews

Detailed balance in large language model-driven agents

https://arxiv.org/abs/2512.10047
48•Anon84•1mo ago
https://hackernoon.com/the-stochastic-parrot-narrative-is-de...

Comments

Mathnerd314•1mo ago
So, the takeaway I get from this paper is that if you have a language model and you set it up so it has an input and it generates an output that is towards some goal (e.g., "make this sentence sound smarter"), then it should converge, because it is following a potential function.

But I have used prompts like this a fair amount, and it is more like stochastic gradient descent - most of the time, once it is close to the target, the model will take a small incremental change, but when it is really close the model will sort of say "this is not improveable as it is" and it will take a large leap to a completely different configuration. And then this will do the incremental optimizations and so on. This could be an artifact of the sampling algorithm, but I think it is also an issue that the model has this potential function encoded, but the prompt and the structure of the model do not actually minimize this potential. So, a real lesson here is that there is actually a lot of work still left to do in terms of smarter sampling. Beam search like is used today is sort of the tip of the iceberg. If we could start doing optimization with the transformer model as a component, like optimizing pipelines of reasoning rather than always generating inputs and outputs sequentially, that is where you could start using this potential function directly and then you would see orders of magnitude smarter AI. There is stuff about prompt optimization, but it is still based on treating models as black boxes rather than the piles of math they are.

versteegen•1mo ago
That's an interesting observation. I'd suggest modelling the LLM's behaviour in that situation as selecting between different simple strategies, each of which has its own transition function. Some of the strategies will be far more common than others. Some of them may be very simple and obey the detailed balance condition (meaning they are reversible Markov chains), but others, and the overall transition function does not.

The definition of the detailed balance condition is very strict and it's obvious that it won't be met in general by most probabilistic programs (sets of rules with probabilistic output) even if you consider only those where all possible outputs have non-zero probability (as required by detailed balance).

And the LLM+agent is only a Markov chain because of the limited state space of the agent. While an LLM is adding to its context window without reaching the window size limit, it is not a Markov chain, as I explained here: https://news.ycombinator.com/item?id=45124761

And, agreed that better optimisation would be incredible. (I would describe it as a search problem.) I'm not sure how feasible it is improve without changing the architecture, e.g. to a diffusion language model. But LLMs already predict many tokens ahead at once which is why beam search is surprisingly unnecesarr. That's how they're able to write coherent sentences (and rhymes), they've already largely determined at the beginning what they're going to write. (See Anthropic mech interp work.) So maybe if we could tap into that we search over vaguely-formed next blocks of text rather than next words.

gwern•1mo ago
There's a vein of research which interprets self-attention as a kind of gradient descent and says that LLMs have essentially pre-solved indefinitely large 'families' or 'classes' of tasks, and the 'learning' they do at runtime is simply gradient descent (possibly Newton) using the 'observations' to figure out which pre-solved instance they are now encountering; this explains why they fail in such strange ways, especially in agentic scenarios - because if the true task is not inside those pre-learned classes, no amount of additional descent can find it after you've found the 'closest' pre-learned task to the true task. (Some links: https://gwern.net/doc/ai/nn/transformer/attention/meta-desce... )

I wonder if this can be interpreted as consistent with that 'meta-learned descent' PoV? If the system is fixed and is just cycling through fixed strategies, that is what you'd expect from that: the descent will thrash around the nearest pre-learned tasks but won't change the overall system or create new solved tasks.

dhampi•1mo ago
The actual title is pretty buzzy given how limited the task described is. In one specific, very constrained and artificial task, you can find something like detailed balance. And even then, their data are quite far from being a perfect fit for detailed balance.

Would love it if I could use my least action principle knowledge for LLM interpretability, this paper doesn't convince me at all :)

versteegen•1mo ago
Since it took me some minutes to find the description of the task, here it is:

We conducted experiments on three different models, including GPT-5 Nano, Claude-4, and Gemini-2.5-flash. Each model was prompted to gener- ate a new word based on a given prompt word such that the sum of the letter indices of the new word equals 100. For example, given the prompt “WIZ- ARDS(23+9+26+1+18+4+19=100)”, the model needs to generate a new word whose letter indices also sum to 100, such as “BUZZY(2+21+26+26+25=100)”

Start all of your commands with a comma (2009)

https://rhodesmill.org/brandon/2009/commands-with-comma/
230•theblazehen•2d ago•65 comments

OpenCiv3: Open-source, cross-platform reimagining of Civilization III

https://openciv3.org/
694•klaussilveira•15h ago•206 comments

The Waymo World Model

https://waymo.com/blog/2026/02/the-waymo-world-model-a-new-frontier-for-autonomous-driving-simula...
962•xnx•20h ago•553 comments

Hoot: Scheme on WebAssembly

https://www.spritely.institute/hoot/
5•AlexeyBrin•58m ago•0 comments

How we made geo joins 400× faster with H3 indexes

https://floedb.ai/blog/how-we-made-geo-joins-400-faster-with-h3-indexes
129•matheusalmeida•2d ago•35 comments

Unseen Footage of Atari Battlezone Arcade Cabinet Production

https://arcadeblogger.com/2026/02/02/unseen-footage-of-atari-battlezone-cabinet-production/
66•videotopia•4d ago•6 comments

Vocal Guide – belt sing without killing yourself

https://jesperordrup.github.io/vocal-guide/
53•jesperordrup•5h ago•24 comments

Jeffrey Snover: "Welcome to the Room"

https://www.jsnover.com/blog/2026/02/01/welcome-to-the-room/
34•kaonwarb•3d ago•27 comments

ga68, the GNU Algol 68 Compiler – FOSDEM 2026 [video]

https://fosdem.org/2026/schedule/event/PEXRTN-ga68-intro/
10•matt_d•3d ago•2 comments

Show HN: Look Ma, No Linux: Shell, App Installer, Vi, Cc on ESP32-S3 / BreezyBox

https://github.com/valdanylchuk/breezydemo
236•isitcontent•15h ago•26 comments

Monty: A minimal, secure Python interpreter written in Rust for use by AI

https://github.com/pydantic/monty
233•dmpetrov•16h ago•124 comments

Where did all the starships go?

https://www.datawrapper.de/blog/science-fiction-decline
32•speckx•3d ago•21 comments

Show HN: I spent 4 years building a UI design tool with only the features I use

https://vecti.com
335•vecti•17h ago•147 comments

Hackers (1995) Animated Experience

https://hackers-1995.vercel.app/
502•todsacerdoti•23h ago•244 comments

Sheldon Brown's Bicycle Technical Info

https://www.sheldonbrown.com/
385•ostacke•21h ago•97 comments

Show HN: If you lose your memory, how to regain access to your computer?

https://eljojo.github.io/rememory/
300•eljojo•18h ago•186 comments

Microsoft open-sources LiteBox, a security-focused library OS

https://github.com/microsoft/litebox
361•aktau•22h ago•185 comments

UK infants ill after drinking contaminated baby formula of Nestle and Danone

https://www.bbc.com/news/articles/c931rxnwn3lo
8•__natty__•3h ago•0 comments

An Update on Heroku

https://www.heroku.com/blog/an-update-on-heroku/
422•lstoll•21h ago•282 comments

PC Floppy Copy Protection: Vault Prolok

https://martypc.blogspot.com/2024/09/pc-floppy-copy-protection-vault-prolok.html
68•kmm•5d ago•10 comments

Dark Alley Mathematics

https://blog.szczepan.org/blog/three-points/
96•quibono•4d ago•22 comments

Was Benoit Mandelbrot a hedgehog or a fox?

https://arxiv.org/abs/2602.01122
21•bikenaga•3d ago•11 comments

The AI boom is causing shortages everywhere else

https://www.washingtonpost.com/technology/2026/02/07/ai-spending-economy-shortages/
19•1vuio0pswjnm7•1h ago•5 comments

How to effectively write quality code with AI

https://heidenstedt.org/posts/2026/how-to-effectively-write-quality-code-with-ai/
264•i5heu•18h ago•215 comments

Delimited Continuations vs. Lwt for Threads

https://mirageos.org/blog/delimcc-vs-lwt
33•romes•4d ago•3 comments

Introducing the Developer Knowledge API and MCP Server

https://developers.googleblog.com/introducing-the-developer-knowledge-api-and-mcp-server/
63•gfortaine•13h ago•28 comments

I now assume that all ads on Apple news are scams

https://kirkville.com/i-now-assume-that-all-ads-on-apple-news-are-scams/
1076•cdrnsf•1d ago•460 comments

Female Asian Elephant Calf Born at the Smithsonian National Zoo

https://www.si.edu/newsdesk/releases/female-asian-elephant-calf-born-smithsonians-national-zoo-an...
39•gmays•10h ago•13 comments

Understanding Neural Network, Visually

https://visualrambling.space/neural-network/
298•surprisetalk•3d ago•44 comments

I spent 5 years in DevOps – Solutions engineering gave me what I was missing

https://infisical.com/blog/devops-to-solutions-engineering
154•vmatsiiako•20h ago•72 comments