Also LED lighting can have infrared, have a significantly more smoother spectrum curve and still last +20k hours without burnout. The cheaper bulb spectra that they show is a blue led + phosphor coating, but there are infrared LEDs, UV leds, and more. You can make quite the convincing sun simulation, even better than any incandescent bulb, but there is almost no demand for UV + Infrared super full spectrum lighting unfortunately. Only movie & theater lights come close.
Do you have a link to a bulb that you can purchase meeting all these criteria? The only one I'm aware of was this obscure "StarLike" that was never actually sold in bulk. LEDs can be made good in theory sure, but in practice they are all terrible in light quality compared to a standard incandescent.
The article uses LED as synonym for typical LED lightning.
Do you really think $5 AUD per month per bulb that you’re running 8 hours a day is worth it for better spectrum quality?
People really should get it and stop sharing newly published papers to the general public. The value of one single academic paper is exactly 0. Even a handful of such articles still has 0 value to the general public. This is only of interest to other academics (or labs, countries, etc.) who may have the power to reproduce it in a controlled environment.
Be very skeptical of correlations like this that have dubious or poorly understood causation. Be even more skeptical if they are about day-to-day stuff that would likely have large swaths of people able to reproduce something like it on huge scales yet they haven't. Extraordinary claims require extraordinary evidence.
Funny enough, the best evidence for this study is that they should probably move somewhere with more sunlight if they can't spell "color" right... /s
However, the experimental group (extra light sources) got rf 91 bulbs, and the control ("LED lighting") got rf 85 bulbs.
The two scales are not exactly comparable, but they both max out at 100. The only source I could find that discusses both says that > 90 CRI is "excellent" and just below that is "very good". It says > 85 rf is "very good", which tells me it's comparable to a mid-80's CRI bulb.
If I accidentally buy a mid-80 CRI bulb, I either return it to the store, or just throw it away.
So, I'd say this study's experimental setup doesn't support any useful conclusions. They showed that so-painfully-bad-California-won't-subsidize-them LEDs are worse than passable LEDs with supplementation from another light source.
The passable LEDs in the study are probably comparable to the cheap ones at our local hardware store, but worse than the ones that cost $10-20 on amazon ten years ago.
This would have been much more interesting if they'd compared high-end LEDs with and without supplementation, and found a difference. (And by "high-end", I mean "still much cheaper then the electricity they save")
a) How do Philips Hue bulbs stack up?
b) Did Philips update them generationally and assuming they are decent now, how recently?
userbinator•1h ago