Have you ever spoken to someone who works at SpaceX? I have multiple friends in the industry, who have taken a trip through the company.
The overwhelming consensus is that - in meetings, you nod along and tell Elon "great idea". Immediately after you get back to real engineering and design things such that they make sense.
The folks working there are under no delusion that he has any business being involved in rocket science, it's fascinating that the general public doesn't see it that way.
How about now? https://www.bbc.com/news/articles/ce3ex92557jo
The average temperature of deep space is approximately -270.45°C or 2.73 Kelvin), which is just above absolute zero. This baseline temperature is set by the Cosmic Microwave Background (CMB) radiatio...
Which is absolute nonsense, because vacuum has no temperature.
There is also no matter to wick the heat away.
It's cold there because there isn't anything there.
So there is nothing to conduct or convect the heat away.
It's like a giant vacuum insulated thermos.
Is putting data centers in thermos' a good idea?
https://en.wikipedia.org/wiki/Black-body_radiation
It has nothing to do with the movements of atoms, but just with the spectrum of photons moving through it. It means that eventually, any object left in space will reach that temperature. But it will not necessarily do it quickly, which is what you need if you're trying to cool something that is emitting heat.
Is it really better than just using solar panels to run a heat pump?
South Africa built nuclear weapons in the 1980s:
https://en.wikipedia.org/wiki/South_Africa_and_weapons_of_ma...
But it never had an orbital launch capability.
Pakistan doesn't have a domestic orbital launch capability but it does have nuclear weapons.
Surprisingly, the United Kingdom doesn't have a domestic orbital launch capability at present though it has had ballistic missiles and nuclear weapons for many decades.
At present, I would say that building a basic implosion-assembled atomic bomb is easier than building a rocket system that reach low Earth orbit. It's a lot easier to build a bomb now than it was in the 1940s. The main thing that prevents wider nuclear weapon proliferation is treaties and inspections, not inherent technical difficulties.
Put those three together and maybe it’s possible to push physics to its limits. Faster networking, maybe 4x-5x capacity per unit compared to earth. Servicing is a pain, might be cheaper to just replace the hardware when a node goes bad.
But it mainly makes sense to those who have the capability and can do it cheaply (compared to the rest). There’s only one company that I can think of and that is SpaceX. They are closing in on (or passed) 8,000 satellites. Vertical integration means their cost-base will always be less than any competitor.
Also read by comment above that discusses WHY superconductors could be the key to cooler electronics in space.
Edit: Not trying to single out the above commenter, just the general “air” around this in all the comments.
I honestly believed folks on HN are generally more open minded. There’s a trillion dollar merger happening the sole basis of which is the topic of this article. One of those companies put 6-8,000 satellites to space on its own dime.
It’s not a stretch, had they put 5 GPUs in each of those satellites, they would have had a 40,000 GPU datacenter in space.
They're reinventing physics? Wow! I guess they'll just use Grok AI to fake the launch videos. Should be good enough for the MVP.
For the superconductivity idea to work, the entire datacenter needs to be shielded both from sunlight and earthlight. This means a GINORMOUS sun shield to provide the required shadow. But wait, the datacenter will orbit the Earth, so it also will need to rotate constantly to keep itself in the shadow! Good luck with station-keeping.
There's a reason the Webb Telescope (which is kept at a balmy 50K) had to be moved to a Sun-Earth Lagrange point. Or why previous infrared telescopes used slowly evaporating liquid helium for cooling.
> I don’t understand what’s with the arrogance and skepticism.
Because it's a fundamentally stupid idea. Stupid ideas should be laughed out.
I'm not talking about "stupid because it's hard to do" but "stupid because of fundamental physical limitations".
This is false, it's hard to cool things in space. Space (vacuum) is a very good insulator.
3 are ways to cool things (lose energy):
- Conduction
- Convection
- Radiation
In space, only radiation works, and it's the least efficient of those 3 options.(We're just saying random physics things right?)
Radiation may be sufficient for the little heat that does get produced.
Do you know the cost of sending up a payload of them?
Do you know how much $$ you need to extract from those payloads to make the cost of sending them up make sense?
Do you know how much they've lied about Starlink revenue and subscription counts?
To that end, a small data center space isn’t about unit-economics, it’s a bigger mission. So the question we should consider is what can we put into space the further that mission. Can we put a meaningful sum of human knowledge out there for preservation? It sounds like “yes,” even if we can’t train ChatGPT models out there yet.
The whole time I was there it was a mental game of trying to steel man the contradictory or incoherent stuff, using my brain power to try and rewrite things to make sense.
After some years, I woke up and realized that’s what I was doing, and even if I could do it in my mind, that didn’t make the source material rational.
Heres hoping you have a similar moment.
I do not politically align with Musk. I’ve always thought Tesla was important in popularizing electric cars while being a low-quality built product with repair and supply chain issues. I think The Boring Company is a joke. Twitter was a power-grab.
I also think SpaceX is societally beneficial, a good means to shake-up a stagnant industry and a humanity-wide area of interest.
If you think I’m a member of a religious cult, I respectfully suggest you evaluate what led You to believe that itself.
I also see no reason to “lay down and die” as I feel is somewhat implied here. I think it’s a truly noble cause, but maybe I read too much sci-fi as a young lad.
Everything dies. Deal with it.
Instead of empowering shithead grifters who promise you a way out, grow trees to create shade for people you will never know. You do that by improving things, not burning limited resources on a conman.
(Yes, I know what steel manning is)
High performance chips are made for the shielded atmosphere. Imagine the cost launching all the extra shielding that you don't need on earth.
It is beyond stupid. Comical levels. I can't believe people are trying to find any justification.
Can you not provide any type of shielding at scale to wrap a (small, not Google tier) data center? To be honest my criticism with TFA is its focus on “you can’t do massive scale” rather than the premise entirely.
The rocket equation will kick your ass every time.
Datacenters in space have a lifespan measured in years. Single-digit years. Communicating with such an installation requires relatively advanced technology. In an extinction level crisis, there will be extremely little chance of finding someone with the equipment, expertise, and power to download bulk data. And don't forget that you have less than a decade to access this data before the constellation either fails or deorbits.
Meanwhile people who actually care about preserving knowledge in a doomsday crisis have created film reels containing a dump of GitHub and enough preamble that civilizations in the far future can reconstruct an x86 machine from scratch. These are buried under glaciers on earth.
We've also launched (something like) a microfilm dump of knowledge to the moon which can be recovered and read manually any time within the next several hundred or thousand years.
Datacenters in space don't solve any of the problems posed because they simply will not last long enough.
- Data centres need a lot of power = giant vast solar panels
- Data centres need a lot of cooling. That's some almighty heatsinks you're going need
- They will need to be radiation-hardened to avoid memory corruption = even more mass
- The hardware will be redundant in like 2 years tops and will need replacing to stay competitive
- Data centres are about 100x bigger (not including solar panels and heat sinks) than the biggest thing we've ever put in space
Tesla is losing market share (and rank increasingly poorly against alternatives), his robots are gonna fail, this datacentre ambition needs to break the laws of physics, grok/twitter is a fake news pedo-loving cesspit that's gonna be regulated into oblivion. Its only down from here on out.
Hey! It can be de-orbited onto the location of your choosing. I bet you can sell this service to the DoD!
Barring that, you can sell it on the global market to the highest bidder.
Then they work backwards, trying to figure out some economic engine to make it happen. "Data centers" are (A) in-vogue for investment right now and (B) vaguely plausible, at least compared to having a space-casino.
That’s how the CFO of OpenAI can essentially say “we need a Federal bailout”, and then turn around and say “lol just joking”.
Disagree there are bunch of scenarios where Data Centers in space make sense. Like nuclear annihilation and having vaults across the globe to communicate and get back lost information because ground data centers would be wiped out by EMP from blasts.
I also like reading how people argue with not what I wrote but with what they imagined I wrote.
There is nothing wrong to imagine anything you like. But if you do it as a CEO, i personally consider that as fraud. Guess I'm weird and old-fashioned like that.
You can make some part of operations on high orbit that won’t decay as much then more ops on lower orbits that decay faster.
If you put stuff underground it is much harder to communicate.
(If you can't xcancel it yourself your hacker card is revoked.)
The answer to that is that coordination problems are really hard. Much harder even than what are currently unsolved engineering problems. In fact, SpaceX can only launch from California because they have DOD coverage for their launches. Otherwise the California Coastal Commission et al. would have blocked them entirely. Perhaps the innovation for affordable space Internet is combining it with mixed-use technology.
The truth is that in America today self-driving cars (regulated by a state board run by bureaucrats) are easier to build than trains (regulated by every property owner on the train route). Mark Zuckerberg tried to spend some money evaluating a train across the Bay and had to give up. But Robotaxi service is live in San Francisco.
So if there is an angle that makes sense to me it's that they anticipate engineering challenges beatable in a way where regulatory challenges are not.
I also checked out your blog and got 2 interesting articles in 2 tries. If you have some personal favourites and listing them is not a bother, I'd be happy to read them.
I thought that was actually quite interesting/practical, because if there is a problem, you can just bury the problem.
not like tmi/fukushima/chernobyl
You do this when the most fragile part in the system fails. Solar panels good for 25 years but the SSDs burn out after 2? Incinerate the lot!
This kind of thinking is late capitalist brain rot. This kind of waste should be a crime.
"That Musk guy is so naive to think you can put data centers in space, what a doof".
Similar comments were probably made regarding electric cars, reusable rockets, buying Twitter, and so on.
I mean, I still remember promises of $1000-per-kg for space launches, and how e.g. Gigafactory will produce half of the world battery supply, and other non-scientific fiction peddled by Musk. Remember when SpaceX suggested in 2019 that the US Army could use its Starship rockets to transport troops and supplies across the planet in minutes? I do. By the way, have they finished testing Starship yet, is it ready?
Just do the basic thermal heat transfer math.
Space is a vacuum. i.e. The lack-of-a-thing that makes a thermos great at keeping your drink hot. A satellite is, if nothing else, a fantastic thermos. A data center in space would necessarily rely completely on cooling by radiation, unlike a terrestrial data center that can make use of convection and conduction. You can't just pipe heat out into the atmosphere or build a heat exchanger. You can't exchange heat with vacuum. You can only radiate heat into it.
Heat is going to limit the compute that can be done in a satellite data centre and radiative cooling solutions are going to massively increase weight. It makes far more sense to build data centers in the arctic.
Musk is up to something here. This could be another hyperloop (i.e. A distracting promise meant to sabotage competition). It could be a legal dodge. It could be a power grab. What it will not be is a useful source of computing power. Anyone who takes this venture seriously is probably going to be burned.
Sufficient hype funds more work for his rocket company.
The more work they have the faster they can develop the systems to get to Mars. His pet project.
I really think it's that simple.
Next up in the equation is surface emissivity which we’ve got a lot of experience in the automotive sector.
And finally surface area, once again, getting quite good here with nanotechnology.
Yes he’s distracting, no it’s not as impossible as many people think.
https://www.pbs.org/newshour/world/pentagon-embraces-musks-g...
Data centers in space make absolute sense when you want as close to real time analysis on all sorts of information. Would you rather have it make the round trip, via satellite to the states? Or are you going to build these things on the ground near a battlefield?
Musk is selling a vision for a MASSIVE government contract to provide a service that no one else could hope to achieve. This is one of those projects where he can run up the budget and operating costs like Boeing, Northrup etc, because it has massive military applications.
Bender•2h ago
If the AI data-center used only 10MW then each could have two redundant SMR's assuming the cooling challenges have been worked out but then we could have nuclear reactor disposal and collision issues.
shetaye•1h ago
[1] https://hackaday.com/2024/02/05/starlinks-inter-satellite-la... (and this is two years ago!) [2] https://resources.nvidia.com/en-us-accelerated-networking-re...
reactordev•23m ago