> Co-author Professor Christoph Salzmann, of UCL Chemistry, said: “Ice on Earth is a cosmological curiosity due to our warm temperatures. You can see its ordered nature in the symmetry of a snowflake.
“Ice in the rest of the Universe has long been considered a snapshot of liquid water – that is, a disordered arrangement fixed in place. Our findings show this is not entirely true.
“Our results also raise questions about amorphous materials in general. These materials have important uses in much advanced technology. For instance, glass fibers that transport data long distances need to be amorphous, or disordered, for their function. If they do contain tiny crystals and we can remove them, this will improve their performance.”
noleary•3h ago
> Co-author Professor Christoph Salzmann, of UCL Chemistry, said: “Ice on Earth is a cosmological curiosity due to our warm temperatures. You can see its ordered nature in the symmetry of a snowflake.
“Ice in the rest of the Universe has long been considered a snapshot of liquid water – that is, a disordered arrangement fixed in place. Our findings show this is not entirely true.
“Our results also raise questions about amorphous materials in general. These materials have important uses in much advanced technology. For instance, glass fibers that transport data long distances need to be amorphous, or disordered, for their function. If they do contain tiny crystals and we can remove them, this will improve their performance.”