In fact they're so absurdly specific that while you could bathe in a solution of them and not get sick, they also frequently fail to infect slightly different members of the same species, which is why ultimately they never become antibiotic alternatives: having the right one on hand ranges from difficult to impossible.
Given that the article goes on to talk about mild persistent inflammation, is it possible that these individuals are sometimes asymptomatic but still capable of carrying/transmitting viruses at least temporarily? The article talks about potentially immunizing healthcare workers during a future pandemic, but if this was just allowing people to never develop symptoms (and not have to leave work) while having low-grade infections, would we accidentally create a work-force of Typhoid Marys?
It seems that the goal is to learn to trigger the benefits, without triggering the bad parts. Which, should probably have been obvious to you without even bothering to read the article.
Oh, and here's what the ISG15 deficiency (the condition these mRNAs are there to simulate) does:
> Patients present...with infectious, neurologic or dermatologic features. Basal ganglia calcification is observed in all patients... The basal ganglia calcifications may cause epileptic seizures... The IFN-I inflammation may also manifest early in life as ulcerative skin lesions in the armpit, groin and neck regions. Finally, ISG15-deficiency leads to mendelian susceptibility to mycobacterial disease... [t]hese infections present as fistulizing lymphadenopathies and respiratory symptoms following BCG vaccination.
Yeah, about those antiviral superpowers...
His reputably published, peer reviewed, work can be found here: https://www.science.org/doi/10.1126/scitranslmed.adx5758
giancarlostoro•1h ago
I'm genuinely asking, I'm a simple software dev not a doctor.
kristjank•1h ago
busyant•1h ago
FWIW, I was trained as a bacterial geneticist and routinely used bacteriophage (viruses that infect bacteria) with various resistance mutations.
Viral mutations are not restricted to viruses that infect bacteria.
edit: in fact, fundamental aspects of the genetic code were determined by analyzing and exploiting viral mutations.
https://en.wikipedia.org/wiki/Crick,_Brenner_et_al._experime...
thyristan•1h ago
And bacteria self-replicate, whereas a virus needs to infect a cell and be reproduced by that cell. Some antiviral mechanisms attack the reproduction proteins that the human cells use, which the virus cannot do without. And the human cells don't have reproductive pressure to replicate viruses, quite the contrary.
aredox•1h ago
2) To further illustrate, some viruses have been nearly eliminated with a single vaccine. Polio didn't manage to adapt before going almost extinct. And a good reason why is:
3) Viruses can only evolve inside contaminated hosts. If you find a cure that stops quickly the virus from multiplying and contaminating, you are also curtailing its ability to adapt. A contaminated host is a giant casino machine, allowing the virus to mutate until it hits a new evolutionary step. A strong enough vaccine or treatment is like throwing out the virus before it has time to play much.
tialaramex•1h ago
grapesodaaaaa•1h ago
XorNot•1h ago
tiahura•24m ago
And no, strep throat is not worse than ebola.
quotemstr•56m ago
But so what? Anti-pathogen drugs are useful in the period during which resistance hasn't become universal, and if and when it comes a problem, we'll have other drugs.
Besides: sometimes you get lucky and the virus goes extinct before it can develop resistance (e.g. smallpox)