frontpage.
newsnewestaskshowjobs

Made with ♥ by @iamnishanth

Open Source @Github

fp.

Fabrice Bellard Releases MicroQuickJS

https://github.com/bellard/mquickjs/blob/main/README.md
1056•Aissen•16h ago•408 comments

Some Epstein file redactions are being undone with hacks

https://www.theguardian.com/us-news/2025/dec/23/epstein-unredacted-files-social-media
461•vinni2•13h ago•353 comments

X-ray: a Python library for finding bad redactions in PDF documents

https://github.com/freelawproject/x-ray
403•rendx•11h ago•79 comments

Unifi Travel Router

https://blog.ui.com/article/travel-in-style-unifi-style-unifi-travel-router
246•flurdy•9h ago•213 comments

Texas app store age verification law blocked by federal judge

https://www.macrumors.com/2025/12/23/texas-app-store-law-blocked/
226•danso•11h ago•129 comments

Autonomously navigating the real world: lessons from the PG&E outage

https://waymo.com/blog/2025/12/autonomously-navigating-the-real-world
80•scoofy•7h ago•32 comments

Show HN: Turn raw HTML into production-ready images for free

https://html2png.dev
67•alvinunreal•7h ago•32 comments

Show HN: Tonbo – an embedded database for serverless and edge runtimes

https://github.com/tonbo-io/tonbo
8•ethegwo•6d ago•2 comments

Don't Become the Machine

https://armeet.bearblog.dev/becoming-the-machine/
67•armeet•6h ago•27 comments

Nabokov's guide to foreigners learning Russian

https://twitter.com/haravayin_hogh/status/2003299405907247502
89•flaxxen•8h ago•136 comments

Could lockfiles just be SBOMs?

https://nesbitt.io/2025/12/23/could-lockfiles-just-be-sboms.html
53•zdw•7h ago•32 comments

Custom Cross Compiler with Nix

https://www.hobson.space/posts/nixcross/
19•todsacerdoti•4h ago•0 comments

Lua 5.5

https://lua.org/versions.html#5.5
289•km•1d ago•96 comments

CEO killed at industrial site by worker operating forklift

https://www.12onyourside.com/2025/12/23/ceo-killed-industrial-site-by-worker-operating-forklift-w...
26•gehwartzen•3h ago•25 comments

Proving Bounds for the Randomized MaxCut Approximation Algorithm in Lean4

https://abhamra.com/blog/randomized-maxcut/
28•todsacerdoti•3d ago•0 comments

Life, Death and Mowing

https://www.cam.ac.uk/stories/lawnmower-poetry
10•timthorn•4d ago•6 comments

Perfect Software – Software for an Audience of One

https://outofdesk.netlify.app/blog/perfect-software
145•ggauravr•4d ago•58 comments

What makes you senior

https://terriblesoftware.org/2025/11/25/what-actually-makes-you-senior/
329•mooreds•4d ago•157 comments

HTTP Caching, a Refresher

https://danburzo.ro/http-caching-refresher/
105•danburzo•14h ago•16 comments

Open source USB to GPIB converter (for Test and Measurement instruments)

https://github.com/xyphro/UsbGpib
35•v15w•8h ago•13 comments

We replaced H.264 streaming with JPEG screenshots (and it worked better)

https://blog.helix.ml/p/we-mass-deployed-15-year-old-screen
417•quesobob•15h ago•254 comments

Is Northern Virginia still the least reliable AWS region?

https://statusgator.com/blog/aws-least-reliable-region-in-2025/
89•colinbartlett•10h ago•61 comments

Learn Lisp/Fennel Programming Against Neovim

https://github.com/humorless/fennel-fp-neovim
53•veqq•6d ago•5 comments

Correspondence Between Don Knuth and Peter van Emde Boas on Priority Deques 1977 [pdf]

https://staff.fnwi.uva.nl/p.vanemdeboas/knuthnote.pdf
32•vismit2000•7h ago•2 comments

Volvo Centum is Dalton Maag's new typeface for Volvo

https://www.wallpaper.com/design-interiors/corporate-design-branding/volvo-new-font-volvo-centum
84•ohjeez•15h ago•72 comments

Help My c64 caught on fire

https://c0de517e.com/026_c64fire.htm
98•ibobev•14h ago•31 comments

'Dracula's Chivito': Hubble reveals largest birthplace of planets ever observed

https://phys.org/news/2025-12-chaotic-dracula-chivito-hubble-reveals.html
45•wglb•7h ago•10 comments

Fifty problems with standard web APIs in 2025

https://zerotrickpony.com/articles/browser-bugs/
120•dhruv3006•6d ago•42 comments

Local AI is driving the biggest change in laptops in decades

https://spectrum.ieee.org/ai-models-locally
223•barqawiz•1d ago•221 comments

Terrence Malick's Disciples

https://yalereview.org/article/bilge-ebiri-terrence-malick
88•prismatic•14h ago•21 comments
Open in hackernews

The Speed of VITs and CNNs

https://lucasb.eyer.be/articles/vit_cnn_speed.html
74•jxmorris12•7mo ago

Comments

GaggiX•7mo ago
>text in photos, phone screens, diagrams and charts, 448px² is enough

Not in the graph you provided as an example.

yorwba•7mo ago
It has this note at the bottom:

"Note that I chose an unusually long chart to exemplify an extreme case of aspect ratio stretching. Still, 512px² is enough.

This is two_col_40643 from ChartQA validation set. Original resolution: 800x1556."

But yeah, ultimately which resolution you need depends on the image content, and if you need to squeeze out every bit of accuracy, processing at the original resolution is unavoidable.

zamadatix•7mo ago
It's enough, especially if you select one of the sharper options like Lanczos, but 512px is sure a lot easier for a human.
ninamoss•7mo ago
Really appreciated the post, very insightful. We also use VITs for some of our models and find that between model compilation and hyperparameter tuning we are able to get sub second evaluation of images on commodity hardware while maintaining a high precision and recall.
John7878781•7mo ago
In the Twitter thread the article mentions, LeCun makes his claim only for "high-resolution" images and the article assumes 1024x1024 to fall under this category. To me, 1024x1024 is not "high-resolution." This assumption is flawed imo

I currently use convnext for image classification at a size of 4096x2048 (definitely counts as "high-resolution"). For my use case, it would never be practical to use VITs for this. I can't downscale the resolution because extremely fine details need to be preserved.

I don't think LeCun's comment was a "knee-jerk reaction" as the article claims.

hedgehog•7mo ago
LeCun's technical assessments have borne out over a lot of years. The likely next step in scaling vision transformers is to treat the image as a MIP pyramid and use the transformer to adaptively sample out of that. Requires RL to train (tricky) but it would decouple compute footprint from input size.
tbalsam•7mo ago
As someone who has worked in computer vision ML for nearly a decade, this sounds like a terrible idea.

You don't need RL remotely for this usecase. Image resolution pyramids are pretty normal tho and handling them well/efficiently is the big thing. Using RL for this would be like trying to use graphene to make a computer screen because it's new and flashy and everyone's talking about it. RL is inherently very sample inefficient, and is there to approximate when you don't have certain defined informative components, which we do have in computer vision in spades. Crossentropy losses (and the like) are (generally, IME/IMO) what RL losses try to approximate, only on a much larger (and more poorly-defined) scale.

Please mark speculation as such -- I've seen people see confident statements like this and spend a lot of time/manhours on it (because it seems plausible). It is not a bad idea from a creativity standpoint, but practically is most certainly not the way to go about it.

(That being said, you can try for dynamic sparsity stuff, it has some painful tradeoffs that generally don't scale but no way in Illinois do you need RL for that)

hedgehog•7mo ago
SPECULATION ALERT! I think there's reasonable motivation though. In the last few years there has been a steady drip of papers in the general area, at least insofar as they use vision transformers and image pyramids, and work on applying RL to object detection goes back before that. IoU and the general way SSD and YOLO descendants are set up is kind of wacky so I don't think it's much of a stretch to try to both 1) avoid attending to or materializing most of the pyramid, and 2) go directly to feature proposals without worrying about box anchors or grid cells or any of that. Now with that context if you still think it's a terrible idea, well, you're probably more current than I am.
tbalsam•7mo ago
Not bad frustrations at all. That said -- IoU is how the final box scores are calculated, that doesn't change how you do feature aggregation, this will happen in basically any technique you use.

Modern SSD/YOLO-style detectors use efficient feature pyramids, you need that to know where to propose where things are in the image.

This sounds a lot like going back to the old school object detection techniques which end up being more inefficient in general, generally very compute inefficient.

dimatura•7mo ago
There's been a huge amount of work on image transformers since the original VIT. A lot of it has explored different schemes to slice up the image in tokens, and I've definitely seen some of it using a multiresolution pyramid. Not sure about the RL part - after all, the higher/low-res levels of the pyramid would add less tokens than the base/high-res level, so it doesn't seem that necessary. But given the sheer volume of work out there I can bet someone has explored this idea or something pretty close to it already.
djoldman•7mo ago
Interesting. Can you run your images through a segment model first and then only classify interesting boxes?
lairv•7mo ago
Curious what kind of classification problems requires full 4096x2048 images, couldn't you feed multiple 512x512 overlapping crops instead?
threeducks•7mo ago
ConvNeXT's architecture contains an AdaptiveAvgPool2d layer: https://github.com/pytorch/vision/blob/5f03dc524bdb7529bb4f2...

This means that you can split your image into tiles, process each tile individually, average the results, apply a final classification layer to the average and get exactly the same result. For reference, see the demonstration below.

You could of course do exactly the same thing with a vision transformer instead of a convolutional neural network.

That being said, architecture is wildly overemphasized in my opinion. Data is everything.

    import torch, torchvision.models

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = torchvision.models.convnext_small()
    model.to(device)
    tile_size, image_size = 32, 224 # note that 32 divides 224 evenly
    image = torch.randn((1, 3, image_size, image_size), device=device)

    # Process image as usual
    x_expected = model(image)

    # Process image as tiles (using for-loops for educational purposes; should use .view and .permute instead for performance)
    features = [
        model.features(image[:, :, y:y + tile_size, x:x + tile_size])
        for y in range(0, image_size, tile_size)
        for x in range(0, image_size, tile_size)]
    x = model.classifier(sum(features) / len(features))

    print(f"Mean squared error: {(x - x_expected).pow(2).mean().item():.20f}")
tbalsam•7mo ago
As someone who's done a fair bit of architecture work -- both are important! Making it either or is a very silly thing, both are the limiting factor for the other and there are no two ways about it.

Also, for classification, MaxPooling is often far superior, you can learn an average smoothing filter in your convolutions beforehand in a data-dependent manner so that Nyquist sampling stuff is properly preserved.

Also, please do smoothed crossentropy for image class stuff (generally speaking, unless maybe data is hilariously large), MSE won't nearly cut it!

But that being said, adaptive stuff certainly is great when doing classification. Something to note is that batching does become an issue at a certain point -- as well as certain other fine-grained details if you're simply going to average it all down to one single vector (IIUC).

threeducks•7mo ago
> Also, please do smoothed crossentropy for image class stuff (generally speaking, unless maybe data is hilariously large), MSE won't nearly cut it!

Of course. The MSE here is not intended to be a training loss, but as a means to demonstrate that both approaches lead to almost the same result except for some rounding error. The MSE is somewhere in the order of 10^-9.

> Also, for classification, MaxPooling is often far superior, you can learn an average smoothing filter in your convolutions beforehand in a data-dependent manner so that Nyquist sampling stuff is properly preserved.

I don't think that max pooling the last feature maps would be a good idea here, because it would cut off about 98 % of the gradients and training would take much longer. (The shape of the input feature layer is (1, 768, 7, 7), pooled to (1, 768, 1, 1).)

> Something to note is that batching does become an issue at a certain point

Could you elaborate on that?

tbalsam•7mo ago
> The MSE here is not intended to be a training loss, but as a means to demonstrate that both approaches lead to almost the same result except for some rounding error.

Ah, gotcha

> I don't think that max pooling the last feature maps would be a good idea here, because it would cut off about 98 % of the gradients and training would take much longer. (The shape of the input feature layer is (1, 768, 7, 7), pooled to (1, 768, 1, 1).)

MaxPooling is generally only useful if you're training your network for it, but in most cases it ends up performing better. That sparsity actually ends up being a good thing -- you generally need to suppress all of those unused activations! It ends up being quite a wide gap in practice (and, if you have convolutions beforehand -- using avgpooling2d is a bit of extra wasted extra computation blurring the input)

> Could you elaborate on that?

Variable-sized inputs don't batch easily as the input dims need to match, you can go down the padding route but that has its own particularly hellacious costs with it that end up taking away from compute that you could be using for other useful things.

dimatura•7mo ago
Slicing up images to analyze them is definitely something people do - in many cases, such as satellite imagery, there is not much alternative. But it should be done mindfully, especially if there are differences between the training and testing steps. Depending on the architecture and the application, it's not the same as processing the whole image at once. Some differences are more or less obvious (for example, you might have border artifacts), but others are more subtle. For example, contrary to the expected positional equivariance of convolutional nets, they can implicitly encode positional information based on where they see border padding during training. For some types of normalization such as instance normalization, the statistics of the normalization may vary significantly when applied across patches or whole images.
kookamamie•7mo ago
> You don't need very high resolution

Yes, you do. Also, 1024x1024 is not high resolution.

An example is segmenting basic 1920x1080 (FHD) video in 60 Hz formats.

CHY872•7mo ago
The article basically argues: You would expect to get similarly good results with subsampling in practice. E.g. no need to process at 1920x1080 when you can do 960x540. Separately, you can break down many problems into smaller tiles and get similar quality results without the compute overheads of a high res ViT.
dimatura•7mo ago
Yeah, the article was painting with a bit too of a broad stroke IMO, though they did briefly acknowledge "special exceptions" such as satellite or medical imagery. It's very application-dependent.

That said, in my experience beginners do often overestimate how much image resolution is needed for a given task for some reason. I often find myself asking to retry their experiments with a lower resolution. There's a surprising amount of information in 128x128 or even smaller images.

magicalhippo•7mo ago
I have a vivid memory of playing Rise of the Triad[1] against my buddy over serial cable. As most PC games from back then, it used mode 13h[2], so 320x200 resolution with a 256 color palette.

I have the distinct memory of firing a rocket at him from far away because I thought that one pixel had the wrong color, and killing him to his great frustration. Good times.

You can play the shareware portion of the game here[3] to get an idea.

[1]: https://en.wikipedia.org/wiki/Rise_of_the_Triad

[2]: https://en.wikipedia.org/wiki/Mode_13h

[3]: https://www.dosgames.com/game/rise-of-the-triad/

jacobgorm•7mo ago
A nice feature of CNNs is that you can change the resolution at inference time without retraining. For instance, when the user plugs in a camera with a different aspect or decides to the change the orientation of his phone from landscape to portrait. It is not clear to me if VITs can support aspect or resolution changes without any retraining?
lava_pidgeon•7mo ago
Can you elaborate? In my experience it is the opposite: CNNs are highly depend on the input tensor shapes thus resolution change need even an architectional change. While resolution changes in ViT lead to more tokens, a ViT model can handle that (for image classification e.g. you always take the CLS token, Segmentation maps and similar task have the same output as in the input).