frontpage.
newsnewestaskshowjobs

Made with ♥ by @iamnishanth

Open Source @Github

fp.

OpenCiv3: Open-source, cross-platform reimagining of Civilization III

https://openciv3.org/
546•klaussilveira•9h ago•153 comments

The Waymo World Model

https://waymo.com/blog/2026/02/the-waymo-world-model-a-new-frontier-for-autonomous-driving-simula...
871•xnx•15h ago•527 comments

How we made geo joins 400× faster with H3 indexes

https://floedb.ai/blog/how-we-made-geo-joins-400-faster-with-h3-indexes
77•matheusalmeida•1d ago•16 comments

Show HN: Look Ma, No Linux: Shell, App Installer, Vi, Cc on ESP32-S3 / BreezyBox

https://github.com/valdanylchuk/breezydemo
186•isitcontent•10h ago•23 comments

Monty: A minimal, secure Python interpreter written in Rust for use by AI

https://github.com/pydantic/monty
189•dmpetrov•10h ago•84 comments

Unseen Footage of Atari Battlezone Arcade Cabinet Production

https://arcadeblogger.com/2026/02/02/unseen-footage-of-atari-battlezone-cabinet-production/
10•videotopia•3d ago•0 comments

Show HN: I spent 4 years building a UI design tool with only the features I use

https://vecti.com
298•vecti•12h ago•133 comments

Microsoft open-sources LiteBox, a security-focused library OS

https://github.com/microsoft/litebox
347•aktau•16h ago•169 comments

Dark Alley Mathematics

https://blog.szczepan.org/blog/three-points/
73•quibono•4d ago•16 comments

Sheldon Brown's Bicycle Technical Info

https://www.sheldonbrown.com/
343•ostacke•16h ago•90 comments

Hackers (1995) Animated Experience

https://hackers-1995.vercel.app/
441•todsacerdoti•18h ago•226 comments

Delimited Continuations vs. Lwt for Threads

https://mirageos.org/blog/delimcc-vs-lwt
16•romes•4d ago•2 comments

Show HN: If you lose your memory, how to regain access to your computer?

https://eljojo.github.io/rememory/
240•eljojo•12h ago•148 comments

PC Floppy Copy Protection: Vault Prolok

https://martypc.blogspot.com/2024/09/pc-floppy-copy-protection-vault-prolok.html
44•kmm•4d ago•3 comments

An Update on Heroku

https://www.heroku.com/blog/an-update-on-heroku/
378•lstoll•16h ago•256 comments

What Is Ruliology?

https://writings.stephenwolfram.com/2026/01/what-is-ruliology/
5•helloplanets•4d ago•1 comments

How to effectively write quality code with AI

https://heidenstedt.org/posts/2026/how-to-effectively-write-quality-code-with-ai/
222•i5heu•13h ago•168 comments

Why I Joined OpenAI

https://www.brendangregg.com/blog/2026-02-07/why-i-joined-openai.html
97•SerCe•6h ago•78 comments

Show HN: ARM64 Android Dev Kit

https://github.com/denuoweb/ARM64-ADK
14•denuoweb•1d ago•2 comments

Female Asian Elephant Calf Born at the Smithsonian National Zoo

https://www.si.edu/newsdesk/releases/female-asian-elephant-calf-born-smithsonians-national-zoo-an...
20•gmays•5h ago•3 comments

Learning from context is harder than we thought

https://hy.tencent.com/research/100025?langVersion=en
162•limoce•3d ago•83 comments

Show HN: R3forth, a ColorForth-inspired language with a tiny VM

https://github.com/phreda4/r3
63•phreda4•9h ago•11 comments

I spent 5 years in DevOps – Solutions engineering gave me what I was missing

https://infisical.com/blog/devops-to-solutions-engineering
129•vmatsiiako•15h ago•56 comments

Introducing the Developer Knowledge API and MCP Server

https://developers.googleblog.com/introducing-the-developer-knowledge-api-and-mcp-server/
40•gfortaine•7h ago•11 comments

Understanding Neural Network, Visually

https://visualrambling.space/neural-network/
261•surprisetalk•3d ago•35 comments

I now assume that all ads on Apple news are scams

https://kirkville.com/i-now-assume-that-all-ads-on-apple-news-are-scams/
1031•cdrnsf•19h ago•428 comments

Zlob.h 100% POSIX and glibc compatible globbing lib that is faste and better

https://github.com/dmtrKovalenko/zlob
6•neogoose•2h ago•3 comments

FORTH? Really!?

https://rescrv.net/w/2026/02/06/associative
56•rescrv•17h ago•19 comments

Show HN: Smooth CLI – Token-efficient browser for AI agents

https://docs.smooth.sh/cli/overview
85•antves•1d ago•61 comments

WebView performance significantly slower than PWA

https://issues.chromium.org/issues/40817676
20•denysonique•6h ago•3 comments
Open in hackernews

Byte latent transformer: Patches scale better than tokens (2024)

https://arxiv.org/abs/2412.09871
107•dlojudice•9mo ago

Comments

dlojudice•9mo ago
This BLT approach is why "AI research is stalling" takes are wrong. Dynamic byte-level patches instead of tokens seems genuinely innovative, not just scaling up the same architecture. Better efficiency AND handling edge cases better? Actual progress. The field is still finding clever ways to rethink fundamentals.
zamalek•9mo ago
I think the sentiment (at least my sentiment) is that "mainstream ML" has fallen into the transformer local minimum, and given the weight of the players in that space it will take a huge amount of force to move them out of it.

The likes of this, Mercury Coder, and even RKWV are definitely hopeful - but there's a pitch black shadow of hype and speculation to outshine.

anon291•9mo ago
I disagree. Most AI innovation today is around things like agents, integrations, and building out use cases. This is possible because transformers have made human-like AI possible for the first-time in the history of humanity. These use-cases will remain the same even if the underlying architecture changes. The number of people working on new architectures today is way more than were working on neural networks in 2017 when 'attention is all you need' came out. Nevertheless, actual ML model researchers are only a small portion of the total ML/AI community, and this is fine.
janalsncm•9mo ago
> AI innovation today

I think you are talking about something else. In my opinion, integration is very different from fundamental ML research.

anon291•9mo ago
There is more fundamental ML research today than at any other point in history, including in non-transformer architectures. That is my point. It doesn't seem that way because 90%+ of 'ML research' has nothing to do with fundamental ML and is instead research around applications, which are indifferent to the underlying model at the end of the day. That was the point of my comment.
Retric•9mo ago
The sheer scale of computation and data available is what’s pushing AI to near human levels. The same algorithms in 1980 wouldn’t be nearly as useful.
mdaniel•9mo ago
I've secretly wondered if the next (ahem) quantum leap in output quality will arrive with quantum computing wherein answering 10,000 if statements simultaneously would radically change the inference pipeline

But I am also open to the fact that I may be thinking of this in terms of 'faster horses' and not the right question

spindump8930•9mo ago
It's not clear how your perception of quantum computing would lead to 'faster horses' in the current view of NN architectures - keep mind that the common view of 'exploring many paths simultaneously' is at best an oversimplification (https://scottaaronson.blog/?p=2026).

That said, perhaps advances in computing fundamentals would lead to something entirely new (and not at all horselike).

anon291•9mo ago
If you can tie in a loss function for a neural network into the quantum excitement state of a quantum system, then presumably, letting the system settle at the energy minimum would be equivalent to a training step, but perhaps much faster.
anon291•9mo ago
It's true, but you can't deny the importance of the architecture. It's pretty clear that using simple perceptrons would not have led us down the same path.
Retric•9mo ago
Sure, but I think a reasonable corollary is that new algorithms and architectures will show their strengths when new realms of computation become available.
spindump8930•9mo ago
If you consider most of the dominate architectures in deeplearning type approaches, transformers are remarkably generic. If you reduce transformer like architectures to "position independent iterated self attention with intermediate transformations", they can support ~all modalities and incorporate other representations (e.g. convolutions, CLIP style embeddings, graphs or sequences encoded with additional position embeddings). On top of that, they're very compute friendly.

Two of the largest weaknesses seem to be auto-regressive sampling (not unique to the base architecture) and expensive self attention over very long contexts (whether sequence shaped or generic graph shaped). Many researchers are focusing efforts there!

Also see: https://www.isattentionallyouneed.com/

anon291•9mo ago
Transformers are very close to some types of feed forward networks. The difference is that transformers can be trained in parallel without the need for auto-regression (which is slow, for training, but kind of nice for streaming , low-latency inference). It's a mathematical trick. RWKV makes it obvious.
janalsncm•9mo ago
I think DeepSeek (v3 and r1) showed us that there’s still a ton of meat on the bone for fundamental research and optimization.
Lerc•9mo ago
Absolutely, I have seen so many good ideas that have not yet made it into notable trained models.

A lot of that is because you need to have a lot more faith than "seems like a good idea" before you spend a few million in training that depends upon it.

Some of it is because when the models released now began training, a lot of those ideas hasn't been published yet.

Time will resolve most of that, cheaper and more performant hardware will allow a lot of those ideas to be tested without the massive commitment required to build the leading edge models.

Workaccount2•9mo ago
The big guys are almost certainly incinerating millions a day on training "maybe it could show some promise" techniques. With the way things are right now, they are probably green lighting everything to find an edge.
joe_the_user•9mo ago
I don't think you're understanding what the "stall" arguments are saying.

Certainly tweaks to performance continue but as understand it, the stalling argument looks at the tendency of broad, "subjective" llm performance to not get beyond a certain level. Basically, that the massive projects to throw more data and training at the thing results in more marginal apparent improvements than the jump(s) we say with GPT 2-3-3.5-4.

The situation imo is that some point once you've ingested and trained on all the world's digitized books, all the coherent parts of the Internet, etc., you a limit to what you get with just "predict next" training. More information after this is more of the same on a higher level.

But again, no doubt, progress on the level of algorithms will continue (Deep Seek was indication of what's possible). But the situation is such progress essentially allows adequate LLMs faster rather than any progress towards "general intelligence".

Edit: clarity and structure

gwern•9mo ago
It is pretty much the same scaling, though: https://arxiv.org/pdf/2412.09871#page=10 It just lets you avoid some of the pathologies of BPEs.
spindump8930•9mo ago
This paper is very cool, comes from respected authors, and is a very nice idea with good experiments (flop controlled for compute). It shouldn't be seen as a wall-breaking innovation though. From the paper:

> Existing transformer libraries and codebases are designed to be highly efficient for tokenizer-based transformer architectures. While we present theoretical flop matched experiments and also use certain efficient implementations (such as FlexAttention) to handle layers that deviate from the vanilla transformer architecture, our implementations may yet not be at parity with tokenizer-based models in terms of wall-clock time and may benefit from further optimizations.

And unfortunately wall-clock deficiencies mean that any quality improvement needs to overcome that additional scaling barrier before any big runs (meaning expensive) can risk using it.

armcat•9mo ago
This was previously reported 5 months ago: https://news.ycombinator.com/item?id=42415122 (84 comments).

As an aside - I am a big fan of Luke Zettlemoyer and his team at the University of Washington. They've been doing cool NLP research for years!

entilzha•9mo ago
Great to see our paper here again! Since the paper release, we've also released model weights here for anyone interesting in building on top of it: https://huggingface.co/facebook/blt. We also added HF Hub code to easily load the model https://github.com/facebookresearch/blt?tab=readme-ov-file#l....
accassar•9mo ago
The thing that stood out for me was the use of ngram hashes as an additional feature set. My understanding of this is that its typically used as a positional feature.

Is this a limitation of the byte patches in that the positional information needs to be augmented?