frontpage.
newsnewestaskshowjobs

Made with ♥ by @iamnishanth

Open Source @Github

fp.

We Mourn Our Craft

https://nolanlawson.com/2026/02/07/we-mourn-our-craft/
186•ColinWright•1h ago•176 comments

I Write Games in C (yes, C)

https://jonathanwhiting.com/writing/blog/games_in_c/
22•valyala•2h ago•6 comments

Hoot: Scheme on WebAssembly

https://www.spritely.institute/hoot/
124•AlexeyBrin•7h ago•24 comments

SectorC: A C Compiler in 512 bytes

https://xorvoid.com/sectorc.html
17•valyala•2h ago•1 comments

U.S. Jobs Disappear at Fastest January Pace Since Great Recession

https://www.forbes.com/sites/mikestunson/2026/02/05/us-jobs-disappear-at-fastest-january-pace-sin...
158•alephnerd•2h ago•106 comments

Stories from 25 Years of Software Development

https://susam.net/twenty-five-years-of-computing.html
65•vinhnx•5h ago•9 comments

OpenCiv3: Open-source, cross-platform reimagining of Civilization III

https://openciv3.org/
833•klaussilveira•22h ago•250 comments

The AI boom is causing shortages everywhere else

https://www.washingtonpost.com/technology/2026/02/07/ai-spending-economy-shortages/
120•1vuio0pswjnm7•8h ago•150 comments

Al Lowe on model trains, funny deaths and working with Disney

https://spillhistorie.no/2026/02/06/interview-with-sierra-veteran-al-lowe/
57•thelok•4h ago•8 comments

The Waymo World Model

https://waymo.com/blog/2026/02/the-waymo-world-model-a-new-frontier-for-autonomous-driving-simula...
1061•xnx•1d ago•613 comments

Reinforcement Learning from Human Feedback

https://rlhfbook.com/
81•onurkanbkrc•7h ago•5 comments

Brookhaven Lab's RHIC Concludes 25-Year Run with Final Collisions

https://www.hpcwire.com/off-the-wire/brookhaven-labs-rhic-concludes-25-year-run-with-final-collis...
4•gnufx•58m ago•1 comments

Start all of your commands with a comma (2009)

https://rhodesmill.org/brandon/2009/commands-with-comma/
490•theblazehen•3d ago•177 comments

Vocal Guide – belt sing without killing yourself

https://jesperordrup.github.io/vocal-guide/
212•jesperordrup•12h ago•73 comments

France's homegrown open source online office suite

https://github.com/suitenumerique
567•nar001•6h ago•259 comments

Coding agents have replaced every framework I used

https://blog.alaindichiappari.dev/p/software-engineering-is-back
226•alainrk•6h ago•354 comments

A Fresh Look at IBM 3270 Information Display System

https://www.rs-online.com/designspark/a-fresh-look-at-ibm-3270-information-display-system
40•rbanffy•4d ago•7 comments

Show HN: I saw this cool navigation reveal, so I made a simple HTML+CSS version

https://github.com/Momciloo/fun-with-clip-path
10•momciloo•2h ago•0 comments

History and Timeline of the Proco Rat Pedal (2021)

https://web.archive.org/web/20211030011207/https://thejhsshow.com/articles/history-and-timeline-o...
19•brudgers•5d ago•4 comments

Selection Rather Than Prediction

https://voratiq.com/blog/selection-rather-than-prediction/
8•languid-photic•3d ago•1 comments

72M Points of Interest

https://tech.marksblogg.com/overture-places-pois.html
29•marklit•5d ago•3 comments

Unseen Footage of Atari Battlezone Arcade Cabinet Production

https://arcadeblogger.com/2026/02/02/unseen-footage-of-atari-battlezone-cabinet-production/
114•videotopia•4d ago•33 comments

Where did all the starships go?

https://www.datawrapper.de/blog/science-fiction-decline
77•speckx•4d ago•83 comments

Show HN: Look Ma, No Linux: Shell, App Installer, Vi, Cc on ESP32-S3 / BreezyBox

https://github.com/valdanylchuk/breezydemo
275•isitcontent•22h ago•38 comments

Learning from context is harder than we thought

https://hy.tencent.com/research/100025?langVersion=en
201•limoce•4d ago•112 comments

Monty: A minimal, secure Python interpreter written in Rust for use by AI

https://github.com/pydantic/monty
288•dmpetrov•22h ago•155 comments

Show HN: Kappal – CLI to Run Docker Compose YML on Kubernetes for Local Dev

https://github.com/sandys/kappal
22•sandGorgon•2d ago•12 comments

Hackers (1995) Animated Experience

https://hackers-1995.vercel.app/
558•todsacerdoti•1d ago•269 comments

Making geo joins faster with H3 indexes

https://floedb.ai/blog/how-we-made-geo-joins-400-faster-with-h3-indexes
155•matheusalmeida•2d ago•48 comments

Sheldon Brown's Bicycle Technical Info

https://www.sheldonbrown.com/
427•ostacke•1d ago•111 comments
Open in hackernews

Muvera: Making multi-vector retrieval as fast as single-vector search

https://research.google/blog/muvera-making-multi-vector-retrieval-as-fast-as-single-vector-search/
98•georgehill•7mo ago

Comments

trengrj•7mo ago
We added Muvera to Weaviate recently https://weaviate.io/blog/muvera and also have a nice podcast on it https://www.youtube.com/watch?v=nSW5g1H4zoU.

When looking at multi-vector / ColBERT style approaches, the embedding per token approach can massively increase costs. You might go from a single 768 dimension vector to 128 x 130 = 16,640 dimensions. Even with better results from a multi-vector model this can make it unfeasible for many use-cases.

Muvera, converts the multiple vectors into a single fixed dimension (usually net smaller) vector that can be used by any ANN index. As you now have a single vector you can use all your existing ANN algorithms and stack other quantization techniques for memory savings. In my opinion it is a much better approach than PLAID because it doesn't require specific index structures or clustering assumptions and can achieve lower latency.

dinobones•7mo ago
So this is basically an “embedding of embeddings”, an approximation of multiple embeddings compressed into one, to reduce dimensionality/increase performance.

All this tells me is that: the “multiple embeddings” are probably mostly overlapping and the marginal value of each additional one is probably low, if you can represent them with a single embedding.

I don’t otherwise see how you can keep comparable performance without breaking information theory.

kevmo314•7mo ago
> marginal value of each additional one is probably low

This is the point of the paper. Specifically, that single embedding vectors are sparse enough that you can compact more data from additional vectors together to improve retrieval performance.

bobosha•7mo ago
how is this different from generating a feature hash of the embeddings i.e reduce from many to one embedding reduction? Could a UMAP or such technique be helpful in reducing to a single vector?
dinkdonkbell•7mo ago
UMAP doesn't project values into the same coordinate space. While the abstract properties are the same between projections, where it projects it to in coordinate space won't be the same.
nighthawk454•7mo ago
Seems to be a trend away from mean-pooling into a single embedding. But instead of dealing with an embedding per token (lots) you still want to reduce it some. This method seems to cluster token embeddings by random partitioning, mean pool for each partition, and concatenate the resulting into a fixed-length final embedding.

Essentially, full multi vector comparison is challenging performance wise. Tools and performance for single vectors are much better. To compromise, cluster into k chunks and concatenate. Then you can do k-vector comparison at once with single-vector tooling and performance.

Ultimately the fixed length vector comes from having a fixed number of partitions, so this is kind of just k-means style clustering of the token level embeddings.

Presumably a dynamic clustering of the tokens could be even better, though that would leave you with a variable number of embeddings per document.

lawlessone•7mo ago
I'm only vaguely familiar with this. So I apologize how I phrase this.

If make a basic sequel query to return all the first names in table, then i can generally expect it to return them all.

If I do a similar query with these neural embeddings could i expect the same or is it more fuzzy?

bawana•7mo ago
Perhaps I misunderstood but it calculates the FDE of query and looks for a similar FDE in the dataset of the model. Doesnt this require calculating all the equivalent sized FDEs in the model?
moab•7mo ago
Yes, but that can be done once at ingestion time. Then retrieval is done over the pre computed FDEs using MIPS.
kartoolOz•7mo ago
It's very hyper-parameter dependent, and in my testing didn't provide comparable performance to maxsim.