frontpage.
newsnewestaskshowjobs

Made with ♥ by @iamnishanth

Open Source @Github

fp.

OpenCiv3: Open-source, cross-platform reimagining of Civilization III

https://openciv3.org/
625•klaussilveira•12h ago•182 comments

The Waymo World Model

https://waymo.com/blog/2026/02/the-waymo-world-model-a-new-frontier-for-autonomous-driving-simula...
927•xnx•18h ago•547 comments

What Is Ruliology?

https://writings.stephenwolfram.com/2026/01/what-is-ruliology/
33•helloplanets•4d ago•24 comments

How we made geo joins 400× faster with H3 indexes

https://floedb.ai/blog/how-we-made-geo-joins-400-faster-with-h3-indexes
109•matheusalmeida•1d ago•27 comments

Jeffrey Snover: "Welcome to the Room"

https://www.jsnover.com/blog/2026/02/01/welcome-to-the-room/
10•kaonwarb•3d ago•7 comments

Unseen Footage of Atari Battlezone Arcade Cabinet Production

https://arcadeblogger.com/2026/02/02/unseen-footage-of-atari-battlezone-cabinet-production/
40•videotopia•4d ago•1 comments

Show HN: Look Ma, No Linux: Shell, App Installer, Vi, Cc on ESP32-S3 / BreezyBox

https://github.com/valdanylchuk/breezydemo
220•isitcontent•13h ago•25 comments

Monty: A minimal, secure Python interpreter written in Rust for use by AI

https://github.com/pydantic/monty
210•dmpetrov•13h ago•103 comments

Show HN: I spent 4 years building a UI design tool with only the features I use

https://vecti.com
322•vecti•15h ago•142 comments

Sheldon Brown's Bicycle Technical Info

https://www.sheldonbrown.com/
370•ostacke•18h ago•94 comments

Microsoft open-sources LiteBox, a security-focused library OS

https://github.com/microsoft/litebox
358•aktau•19h ago•181 comments

Hackers (1995) Animated Experience

https://hackers-1995.vercel.app/
478•todsacerdoti•20h ago•232 comments

Show HN: If you lose your memory, how to regain access to your computer?

https://eljojo.github.io/rememory/
272•eljojo•15h ago•161 comments

An Update on Heroku

https://www.heroku.com/blog/an-update-on-heroku/
402•lstoll•19h ago•271 comments

Dark Alley Mathematics

https://blog.szczepan.org/blog/three-points/
85•quibono•4d ago•20 comments

Vocal Guide – belt sing without killing yourself

https://jesperordrup.github.io/vocal-guide/
14•jesperordrup•2h ago•7 comments

Delimited Continuations vs. Lwt for Threads

https://mirageos.org/blog/delimcc-vs-lwt
25•romes•4d ago•3 comments

PC Floppy Copy Protection: Vault Prolok

https://martypc.blogspot.com/2024/09/pc-floppy-copy-protection-vault-prolok.html
56•kmm•5d ago•3 comments

Start all of your commands with a comma

https://rhodesmill.org/brandon/2009/commands-with-comma/
3•theblazehen•2d ago•0 comments

Was Benoit Mandelbrot a hedgehog or a fox?

https://arxiv.org/abs/2602.01122
12•bikenaga•3d ago•2 comments

How to effectively write quality code with AI

https://heidenstedt.org/posts/2026/how-to-effectively-write-quality-code-with-ai/
244•i5heu•15h ago•189 comments

Introducing the Developer Knowledge API and MCP Server

https://developers.googleblog.com/introducing-the-developer-knowledge-api-and-mcp-server/
52•gfortaine•10h ago•21 comments

I spent 5 years in DevOps – Solutions engineering gave me what I was missing

https://infisical.com/blog/devops-to-solutions-engineering
140•vmatsiiako•17h ago•63 comments

Understanding Neural Network, Visually

https://visualrambling.space/neural-network/
280•surprisetalk•3d ago•37 comments

I now assume that all ads on Apple news are scams

https://kirkville.com/i-now-assume-that-all-ads-on-apple-news-are-scams/
1058•cdrnsf•22h ago•433 comments

Why I Joined OpenAI

https://www.brendangregg.com/blog/2026-02-07/why-i-joined-openai.html
133•SerCe•8h ago•117 comments

Show HN: R3forth, a ColorForth-inspired language with a tiny VM

https://github.com/phreda4/r3
70•phreda4•12h ago•14 comments

Female Asian Elephant Calf Born at the Smithsonian National Zoo

https://www.si.edu/newsdesk/releases/female-asian-elephant-calf-born-smithsonians-national-zoo-an...
28•gmays•8h ago•11 comments

Learning from context is harder than we thought

https://hy.tencent.com/research/100025?langVersion=en
176•limoce•3d ago•96 comments

FORTH? Really!?

https://rescrv.net/w/2026/02/06/associative
63•rescrv•20h ago•22 comments
Open in hackernews

Show HN: Text-to-video model from scratch (2 brothers, 2 years, 2B params)

https://huggingface.co/collections/Linum-AI/linum-v2-2b-text-to-video
158•schopra909•2w ago
Writeup (includes good/bad sample generations): https://www.linum.ai/field-notes/launch-linum-v2

We're Sahil and Manu, two brothers who spent the last 2 years training text-to-video models from scratch. Today we're releasing them under Apache 2.0.

These are 2B param models capable of generating 2-5 seconds of footage at either 360p or 720p. In terms of model size, the closest comparison is Alibaba's Wan 2.1 1.3B. From our testing, we get significantly better motion capture and aesthetics.

We're not claiming to have reached the frontier. For us, this is a stepping stone towards SOTA - proof we can train these models end-to-end ourselves.

Why train a model from scratch?

We shipped our first model in January 2024 (pre-Sora) as a 180p, 1-second GIF bot, bootstrapped off Stable Diffusion XL. Image VAEs don't understand temporal coherence, and without the original training data, you can't smoothly transition between image and video distributions. At some point you're better off starting over.

For v2, we use T5 for text encoding, Wan 2.1 VAE for compression, and a DiT-variant backbone trained with flow matching. We built our own temporal VAE but Wan's was smaller with equivalent performance, so we used it to save on embedding costs. (We'll open-source our VAE shortly.)

The bulk of development time went into building curation pipelines that actually work (e.g., hand-labeling aesthetic properties and fine-tuning VLMs to filter at scale).

What works: Cartoon/animated styles, food and nature scenes, simple character motion. What doesn't: Complex physics, fast motion (e.g., gymnastics, dancing), consistent text.

Why build this when Veo/Sora exist? Products are extensions of the underlying model's capabilities. If users want a feature the model doesn't support (character consistency, camera controls, editing, style mapping, etc.), you're stuck. To build the product we want, we need to update the model itself. That means owning the development process. It's a bet that will take time (and a lot of GPU compute) to pay off, but we think it's the right one.

What’s next? - Post-training for physics/deformations - Distillation for speed - Audio capabilities - Model scaling

We kept a “lab notebook” of all our experiments in Notion. Happy to answer questions about building a model from 0 → 1. Comments and feedback welcome!

Comments

streamer45•2w ago
Rad! huggingface link gives 404 on my side though.
schopra909•2w ago
Oh damn! Thanks for catching that -- going to ping the HF folks to see what they can do to fix the collection link.

In the meantime here's the individual links to the models:

https://huggingface.co/Linum-AI/linum-v2-720p https://huggingface.co/Linum-AI/linum-v2-360p

schopra909•2w ago
Should be fixed now! Thanks again for the heads up
streamer45•2w ago
All good, cheers!
schopra909•2w ago
Per the RAM comment, you may able to get it run locally with two tweaks:

https://github.com/Linum-AI/linum-v2/blob/298b1bb9186b5b9ff6...

1) Free up the t5 as soon as the text is encoded, so you reclaim GPU RAM

2) Manual Layer Offloading; move layers off GPU once they're done being used to free up space for the remaining layers + activations

dsrtslnd23•2w ago
Any idea on the minimum VRAM footprint with those tweaks? 20GB seems high for a 2B model. I guess the T5 encoder is responsible for that.
schopra909•2w ago
T5 Encoder is ~5B parameters so back of the envelope would be ~10GB of VRAM (it's in bfloat16). So, for 360p should take ~15 GB RAM (+/- a few GB based on the duration of video generated).

We can update the code over the next day or two to provide the option for delete VAE after the text encoding is computed (to save on RAM). And then report back the GB consumed for 360p, 720p 2-5 seconds on GitHub so there are more accurate numbers.

Beyond the 10 GB from the T5, there's just a lot of VRAM taken up by the context window of 720p video (even though the model itself is 2B parameters).

storystarling•2w ago
The 5B text encoder feels disproportionate for a 2B video model. If the text portion is dominating your VRAM usage it really hurts the inference economics.

Have you tried quantizing the T5? In my experience you can usually run these encoders in 8-bit or even 4-bit with negligible quality loss. Dropping that memory footprint would make this much more viable for consumer hardware.

schopra909•2w ago
Great idea! We haven’t tried it but def interested to see if that works as well.

When we started down this path, T5 was the standard (back in 2024).

Likely won’t be the text encoder for subsequent models, given its size (per your point) and age

schopra909•2w ago
That all being said, you can just delete the T5 from memory after encoding the text so save on memory.

The 2B parameters will take up 4 Gb of memory but activations will be a lot more given size of context windows for video.

A 720p 5 second video is roughly 100K tokens of context

streamer45•2w ago
Looks like 20GB VRAM isn't enough for the 360p demo :( need to bump my specs :sweat_smile:
E-Reverance•2w ago
Post it on r/StableDiffusion
WhitneyLand•2w ago
Great work. How many GPU hours to train?
throwaway314155•2w ago
How much compute was ultimately required to get this done?
popalchemist•2w ago
Incredibly impressive, dudes. Well done.
convivialdingo•2w ago
That’s amazing effort - I am impressed.

Awesome to see more small teams making impressive leaps.

taherchhabra•2w ago
I want to build my own video model, just for learning purposes, is there any course which can teach end to end
schopra909•2w ago
I think YC just release video on the basics of diffusion, but honestly I don’t have a good end to end guide.

We’re going to write up going 0->1 on a video model (all the steps) over the coming months. But it likely won’t be a class or anything like that.

https://www.linum.ai/field-notes

We want to share our learnings with folks who are curious about the space - but don’t have time to make it a full class experience.

Hopefully karpathy does that with his courses in the future!

mandeepj•2w ago
> I want to build my own video model, just for learning purposes

Sorry, it might sound like a cliche, but try that as a prompt to a deep thinking and learning model, and see what comes out.

An expensive option: Look at Project #5 at https://bytebyteai.com/

whywhywhywhy•2w ago
> We kept a “lab notebook” of all our experiments in Notion

Couldn't find a link to this, is this public?

schopra909•2w ago
Not public yet — we’re going to clean it up so it’s readable and release it as blog posts. First one will be everything you need to know on building a VAE for image and video. Should be out in a few weeks. We’re figuring out the write balance between spending time writing and all the work we have on our plate for the next model.

If you’re interested in this stuff, keep an eye on field notes (our blog).

schopra909•2w ago
https://www.linum.ai/field-notes
tariqshams•2w ago
Very cool, especially given that it’s a two person team. I will be checking this out on the weekend.

Also I’m super curious on how you’re attempting to have more realistic physics with post training.

glohbalrob•1w ago
Nice work. Are you guys on X?