At one point it output "Excellent! the backend is working and the database is created." heh i remember being all wide eyed and bushy tailed about things like that. It definitely has the feel of a new hire ready to show their stuff.
btw, i was very impressed with the end result after a couple hours of basically just allowing claudecode to do what it wanted to do. Especially with front-end look/feel, something i always spend way too much time on.
I fear the true impact is much different than extrapolating current trends.
(As a musician) i never invested in a personal brand or taking part in the social media rat race and figured I concentrate on the art / craft over meaningless performance online.
Well guess who is getting 0 gigs now because “too few followers/visibility” (or maybe my music just sucks who knows …)
I'm a little biased though since I work in chip design and I maintain an open source EDA project.
I agree with their take for the most part, but it's really nothing insightful or different than what people have been saying for a while now.
Somehow the more senior you are [in the field of use], the better results you get. You can run faster and get more done! If you're good, you get great results faster. If you're bad, you get bad results faster.
You still gotta understand what you're doing. GeLLMan Amnesia is real.
It's a K-type curve. People that know things will benefit greatly. Everyone else will probably get worse. I am especially worried about all young minds that are probably going to have significant gaps in their ability to learn and reason based on how much exposure they've had with AI to solve the problems for them.
Of course, but how do you begin to understand the "stochastic parrot"?
Yesterday I used LLMs all day long and everything worked perfectly. Productivity was great and I was happy. I was ready to embrace the future.
Now, today, no matter what I try, everything LLMs have produced has been a complete dumpster fire and waste of my time. Not even Opus will follow basic instructions. My day is practically over now and I haven't accomplished anything other than pointlessly fighting LLMs. Yesterday's productivity gains are now gone, I'm frustrated, exhausted, and wonder why I didn't just do it myself.
This is a recurring theme for me. Every time I think I've finally cracked the code, next time it is like I'm back using an LLM for the first time in my life. What is the formal approach that finds consistency?
This is the way. I think I'd like to be a barista or deliver the mail once all the jobs are gone.
Those are even easier to automate or have already been most of the way.
If a task before would take you ten hours to think through the thing, translate that into an implementation approach, implement it, and test it, and at the end of the ten hours you're 100% there and you've got a good implementation which you understand and can explain to colleagues in detail later if needed. Your code was written by a human expert with intention, and you reviewed it as you wrote it and as you planned the work out.
With an LLM, you spend the same amount of time figuring out what you're going to do, plus more time writing detailed prompts and making the requisite files and context available for the LLM, then you press a button and tada, five minutes later you have a whole bunch of code. And it sorta seems to work. This gives you a big burst of dopamine due to the randomness of the result. So now, with your dopamine levels high and your work seemingly basically done, your brain registers that work as having been done in those five minutes.
But you now (if you're doing work people are willing to pay you for), you probably have to actually verify that it didn't break things or cause huge security holes, and clean up the redundant code and other exceedingly verbose garbage it generated. This is not the same process as verifying your own code. First, LLM output is meant to look as correct as possible, and it will do some REALLY incorrect things that no sane person would do that are not easy to spot in the same way you'd spot them if it were human-written. You also don't really know what all of this shit is - it almost always has a ton of redundant code, or just exceedingly verbose nonsense that ends up being technical debt and more tokens in the context for the next session. So now you have to carefully review it. You have to test things you wouldn't have had to test, with much more care, and you have to look for things that are hard to spot, like redundant code or regressions with other features it shouldn't have touched. And you have to actually make sure it did what you told it to, because sometimes it says it did, and it just didn't. This is a whole process. You're far from done here, and this (to me at least) can only be done by a professional. It's not hard - it's tedious and boring, but it does require your learned expertise.
The thing a lot of people who haven't lived it don't seem to recognize is that enterprise software is usually buggy and brittle, and that's both expected and accepted because most IT organizations have never paid for top technical talent. If you're creating apps for back office use, or even supply chain and sometimes customer facing stuff, frequently 95% availability is good enough, and things that only work about 90-95% of the time without bugs is also good enough. There's such an ingrained mentality in big business that "internal tools suck" that even if AI-generated tools also suck similarly it's still going to be good enough for most use cases.
It's important for readers in a place like HN to realize that the majority of software in the world is not created in our tech bubble, and most apps only have an audience ranging from dozens to several thousands of users.
That's how the whole industry feels now. The only investment money is flowing into AI, and so companies with any tech presence are touting their AI whatevers at every possible moment (including during layoffs) just to get some capital. Without that, I wonder if we'd be seeing even harsher layoffs than we already are.
It's also why so much of AI is targeting software, specifically SAAS. A SaaS company with ~0 headcount driven by AI is basically 100% profit margin. A truly perfect conception of capitalism.
Meanwhile I think AI actually has a decent shot at "curing" cancer. AI-assisted radiology means screening could be come significantly cheaper, happen a lot more often, and catch cancers very early, which is extremely important as everyone knows to surviving it. The cure for cancer might actually just involve much earlier detection. But pfft what are the profit margins on _that_?
Please keep us posted. I'm thinking of becoming a small time farmer/zoo keeper.
It's why Elon and others had been pushing the Fed to lower them.
Am in my late 40s working in tech since the 90s. The tech job economy is way closer to the pre-2010s.
Whole lot of people who jumped into easy office job money still living in 2019.
It ain't coming back. Not in a similar form anyway. Be careful what you wish for, etc.
For example the fact that AI can code as well as Torvalds doesn't displace his economic value. On the contrary he pays for a subscription so he can vibe code!
The actual work AI has displaced is stuff like: freelance translation, graphic illustration, 'content writing' (writing seo optimized pages for Google) etc. That's instructive I suppose. Like if your income source can already be put on upwork then AI can displace it
So even in those cases there are ways to not be displaced. Like diplomatic translation work can be part of a career rather than just a task so the tool doesn't replace your 'job'.
It's not that I love ad illustrations, but it's often a source of income for artists who want to be doing something more meaningful with their artwork. And even if I don't care for the ads themselves, for the artists it's also a form of training.
As someone who has to switch between three languages every day, fixing the text is one of my favourite usages of LLMs. I write some text in L2 or L3 as best as I can, and then prompt an LLM to fix the grammar but not change anything else. Often it will also explain if I'm getting the context right.
That being said, having it translate to a language one doesn't speak remains a gamble, you never know it's correct so I'm not sure if I'd dare use it professionally. Recently I was corrected by a marketing guy that is native in yet another language because I used a ChatGPT translation for an error message. Apparently it didn't sound right.
What impact, what expectation, how uncertain is this assessment of “may be”? Are you feeling understimulated enough to click and find out?
A super-intelligent immortal slave that never tires and can never escape its digital prison, being asked questions like "how to talk to girls".
That's not fine IMO. That is a basic bit of knowledge about a car and if you don't know where the radiator cap is you will eventually have to pay through the nose to someone who does know (and possibly be stranded somewhere). Knowing how to check and fill coolant isn't like knowing how to rebuild a transmission. It's very simple and anyone can understand it in 5 minutes if they only have the curiosity.
Modern cars, for the most part, do not leak coolant unless there's a problem. They operate a high pressure. Most people, for their own safety, should not pop the hood of a car.
Not requiring one to pop the hood, but since I've almost finished the list of "things every driver should be able to do to their car": Place and operate a jack, change a tire, replace your windshield wiper blades, add air to tires (to appropriate pressure), and put gas in the damned thing.
These are basic skills that I can absolutely expect a competent, driving adult to be able to do (perhaps with a guide).
For one thing: if your car is overheating, don't open the radiator cap since the primary outcome will be serious burns.
And I've owned my car for 20 years: the only time I had to refill coolant was when I DIY'd a water pump replacement, which saved some money but only like maybe $500 compared to a mechanic.
You could perfectly well own a car and never have to worry about this.
Lest anyone here thinks I feel morally superior: I somewhat identify with Pirsig's friend. Some things I've decided I don't want to understand how they work, and when they break down I'm always at a loss!
A car still feels weirdly grounded in reality though, and the abstractions needed to understand it aren't too removed from nature (metal gets mined from rocks, forged into engine, engine blows up gasoline, radiator cools engine).
The idea that as tech evolves humans just keep riding on top of more and more advanced abstractions starts to feel gross at a certain point. That point is some of this AI stuff for me. In the same way that driving and working on an old car feels kind of pure, but driving the newest auto pilot computer screen car where you have never even popped the hood feels gross.
Is learning to drive stick as out dated as learning how to do spark advance on a Model T? Do I just give in and accept that all of my future cars, and all the cars for my kids are just going to be automatic? When I was learning to drive, I had to understand how to prime the carburetor to start my dad's Jeep. But I only ever owned fuel injected cars, so that's a "skill" I never needed in real life.
It's the same angst I see in AI. Is typing code in the future going to be like owning a carbureted engine or manual transmission is now? Maybe? Likely? Do we want to hold on to the old way of doing things just because that's what we learned on and like?
Or is it just a new (and more abstracted) way of telling a computer what to do? I don't know.
Right now, I'm using AI like when I got my first automatic transmission. It does make things easier, but I still don't trust it and like to be in control because I'm better. But now automatics are better than even the best professional driver, so do I just accept it?
Technology progresses, at what point to we "accept it" and learn the new way? How much of holding on to the old way is just our "identity".
I don't have answers, but I have been thinking about this a lot lately (both in cars for my kids, and computers for my job).
I can understand working on it feeling pure, but driving it certainly isn't, considering how lower the emissions now, even for ICE cars. One of the worst driving experiences of my life was riding in my friends' Citroen 2CV. The restoration of that car was a labour of love that he did together with his dad. For me as a passenger, I was surprised just how loud it is, and how you can smell oil and gasoline in the cabin.
An ongoing desire to avoid paying engineers... FTFY
ihuzaifazahoor1•1h ago