The most interesting part, IMO, is the "SRAM with EEPROM backup" chip. It allows you to persistently save the clock hands' positions every time they're moved, without burning through the limited write endurance of a plain old EEPROM. And it costs less than $1 in single quantities. That's a useful product to know about.
So the way this works seems to be this: It's an SRAM and an EEPROM in one little package along with a controller that talks with each, with a little capacitor (this clock uses 4.7uf) placed nearby.
The SRAM part does all of the normal SRAM stuff: It doesn't wear out from reading/writing, and as long as it has power it retains the data it holds.
The EEPROM does all the normal EEPROM stuff: It stores data forever (on the timescale of an individual human, anyway), but has somewhat-limited write cycles.
The controller: When it detects a low voltage, it goes "oh shit!" and immediately dumps the contents of the SRAM into EEPROM. This saves on EEPROM write cycles: If there are no power events, the EEPROM is never written at all.
Meanwhile, the capacitor: It provides the power for the chip to perform this EEPROM write when an "oh shit!" event occurs.
When power comes back, the EEPROM's data is copied back to SRAM.
---
Downsides? This 47L04 only holds 4 kilobits. Upsides? For hobbyist projects and limited production runs, spending $1 to solve a problem is ~nothing. :)
I got one for my daughter. The erratic ticking eventually became a distraction when she was studying, so we have retired it for now. But we got a lot of amusement out of it.
That's pretty genius for many ADHD-type folks. Only problem is a modern household has many clocks in view, so you'd need to commit to just not setting them.
Easy enough for wifi enabled ones: a UDP broadcast to discover other clocks on the network, then sync how you will.
For non-wifi-enabled clocks, perhaps something like a CH572 would do the trick: a $0.20 RISC-V microcontroller with BLE support that all the clocks in the same vicinity could use to talk to each other.
You could really mess with your neighbors if they had the same clocks and you were within range...
Radio controlled ("atomic") clocks get their signal from WWVB, a long-wave station in Colorado. Its signal is just a carrier and data is encoded via pulse-width modulation and phase modulation. People have built local, low-powered WWVB transmitters to sync their watches and so forth in areas where WWVB is hard or impossible to receive. It's not a good idea to build one of these unless you REALLy know what you're doing because radio signals can travel farther than you expect, and the FCC takes a rather dim view of intentionally broadcasting your own signal (to any distance) without a license to do so.
The red projection is just the right brightness (at night) but it sucks that it's not wifi-enabled so you can't just get it to NTP sync (or hook up a GPS receiver). The projector part of the clock is a separate device that's attached to it via a ribbon cable. I would reverse engineer it myself but I haven't got the time.
Ideally, I'd want a matrix of LEDs projected on to the ceiling so I could get more info than just the time. Such clocks exist but they're super duper expensive! Example: https://buyfrixos.com/
Days spent modifying cheap electronics is absolutely encouraged.
Looking at the code [1], it looks like if the actual time is 1 hour ahead of the displayed time, then we get 10 pulses per second to leap forward. Otherwise, the clock stops running for an hour to fall back.
https://github.com/jim11662418/ESP8266_WiFi_Analog_Clock/blo...
The point is to have fun and learn something, not really to solve a problem in a practical sense. The radio controlled clocks are extremely unreliable where I live.
https://en.wikipedia.org/wiki/Radio_clock#List_of_radio_time...
As for the problem of detecting the current position of hands - Casio solved in in watches with their Tough Movement mechanism, where there is a tiny tiny hole in the dial with a sensor behind it - the watch will check if the hands are over it when expected, and if not, automatically adjust - so even if a watch suffers a major impact that might move the hands, they will re-allign themselves. Such a clever and simple solution.
I never considered making my own. Anyway, about two years ago this option popped up on Amazon. I've been happy with it:
https://www.amazon.com/OCEST-Wall-Clock-12Inch-Auto/dp/B0DJS...
I'm guessing internally it's not much different than the DIY clock in this submission.
[0] - https://www.nist.gov/pml/time-and-frequency-division/time-di...
OK, here's how I'd do it: add small magnets at the bottom of the clock hands, and use the ESP's built-in Hall effect sensor to detect them. You can distinguish between hands using the magnetic field orientation.
kotaKat•1h ago
Apparently the entity today known as Sharp sells “AccuSet(tm)” branded clocks that “automatically set time”… but they’re just factory pre-set with a button cell and they include a slider on the bottom to set a timezone offset (only for US timezones). If you’re lucky, the clock’s battery is still good and the clock “set itself” out of the box several minutes late.
If you’re unlucky - surprise, you get to manually set the time anyways.
https://www.amazon.com/Sharp-Digital-Alarm-AccuSet-Automatic...
relaxing•1h ago
There was a kerfuffle a few years back about the funding for the station being cut, but luckily that did not come to be.
orev•1h ago
geerlingguy•1h ago
drivers99•1h ago
I had a Casio wave ceptor (one with analog hands which it doesn't look like they sell anymore; I should have kept it). Anyway, looking at a model that's currently available (WV-200R, but there are 2 other models available), its manual says it gets signals from "Germany (Mainflingen), England (Anthorn), United States (Fort Collins), [and] Japan."
I was curious so I looked those up:
Mainflingen DCF77 77.5 kHz
Anthorn 60 kHz
Fort Collins WWVB 60 kHz
Japan looks like they have Mount Otakayoda 40 kHz, and Mount Hagane 60 kHz.
There are also some other countries that have time broadcasts (e.g. France. Anywhere else?) but not that that watch uses.
jonathanlydall•40m ago
I know this because when my mother was visiting the US over a decade ago, she found a clock she felt was aesthetically perfect for her psychology practice room at her house.
Twice a year the clock changes its time to be 10 hours (or thereabouts) behind, no doubt due to daylight savings change over.
So she has to readjust the time whenever this happens which she says she doesn’t really mind.