I read this article a few days ago I'm sure, word-for-word, but it wasn't on this site in OP? It stood out because when it mentioned textbooks and said "including ours" I looked at the site and thought to myself "they do textbooks?".
(side note: does anyone else get thrown off by the Epilogue font? It looks very wide in some cases and very narrow in others... makes me want to override it with Stylus if my employer hadn't blocked browser extensions for security reasons, which raises the question of why I am even reading the article on this computer....)
qsort•1h ago
It's actually common for algorithms with a lower asymptotic complexity to be worse in practice, a classic example is matrix multiplication.
Also please, please, can we stop with the "eww, math" reactions?
> The new approach claims order (m log^(2/3) n) which is clearly going to be less for large enough n. (I had to take a refresher course on log notation before I could even write that sentence with any confidence.)
I'm sure the author is just exaggerating, he's clearly very competent, but it's a sentence with the vibes of "I can't do 7x8 without a calculator."
yborg•1h ago
shermantanktop•1h ago
gowld•59m ago
If m > n (log n)^{1/3}
Then this algorithm is slower.
for 1 Million nodes, if the average degree is >3.5, the new algorithm has worse complexity (ignoring unstated constant factors)
bee_rider•51m ago
usrusr•50m ago
mightyham•56m ago
I struggle to see the point of your comment. The blog post in question does not say that the paper in question claims to be faster in practice. It simply is examining if the new algorithm has any application in network routing; what is wrong with that?