frontpage.
newsnewestaskshowjobs

Made with ♥ by @iamnishanth

Open Source @Github

fp.

Show HN: Look Ma, No Linux: Shell, App Installer, Vi, Cc on ESP32-S3 / BreezyBox

https://github.com/valdanylchuk/breezydemo
255•isitcontent•18h ago•27 comments

Show HN: I spent 4 years building a UI design tool with only the features I use

https://vecti.com
354•vecti•20h ago•160 comments

Show HN: Kappal – CLI to Run Docker Compose YML on Kubernetes for Local Dev

https://github.com/sandys/kappal
10•sandGorgon•2d ago•2 comments

Show HN: If you lose your memory, how to regain access to your computer?

https://eljojo.github.io/rememory/
327•eljojo•21h ago•198 comments

Show HN: R3forth, a ColorForth-inspired language with a tiny VM

https://github.com/phreda4/r3
79•phreda4•18h ago•14 comments

Show HN: Smooth CLI – Token-efficient browser for AI agents

https://docs.smooth.sh/cli/overview
93•antves•2d ago•70 comments

Show HN: MCP App to play backgammon with your LLM

https://github.com/sam-mfb/backgammon-mcp
3•sam256•2h ago•1 comments

Show HN: XAPIs.dev – Twitter API Alternative at 90% Lower Cost

https://xapis.dev
3•nmfccodes•37m ago•1 comments

Show HN: I'm 75, building an OSS Virtual Protest Protocol for digital activism

https://github.com/voice-of-japan/Virtual-Protest-Protocol/blob/main/README.md
6•sakanakana00•3h ago•1 comments

Show HN: I built Divvy to split restaurant bills from a photo

https://divvyai.app/
3•pieterdy•3h ago•1 comments

Show HN: BioTradingArena – Benchmark for LLMs to predict biotech stock movements

https://www.biotradingarena.com/hn
26•dchu17•23h ago•12 comments

Show HN: Slack CLI for Agents

https://github.com/stablyai/agent-slack
50•nwparker•1d ago•11 comments

Show HN: Artifact Keeper – Open-Source Artifactory/Nexus Alternative in Rust

https://github.com/artifact-keeper
152•bsgeraci•1d ago•64 comments

Show HN: ARM64 Android Dev Kit

https://github.com/denuoweb/ARM64-ADK
17•denuoweb•2d ago•2 comments

Show HN: Gigacode – Use OpenCode's UI with Claude Code/Codex/Amp

https://github.com/rivet-dev/sandbox-agent/tree/main/gigacode
19•NathanFlurry•1d ago•9 comments

Show HN: I Hacked My Family's Meal Planning with an App

https://mealjar.app
2•melvinzammit•5h ago•0 comments

Show HN: I built a free UCP checker – see if AI agents can find your store

https://ucphub.ai/ucp-store-check/
2•vladeta•6h ago•2 comments

Show HN: Compile-Time Vibe Coding

https://github.com/Michael-JB/vibecode
10•michaelchicory•7h ago•1 comments

Show HN: Slop News – HN front page now, but it's all slop

https://dosaygo-studio.github.io/hn-front-page-2035/slop-news
17•keepamovin•8h ago•5 comments

Show HN: Micropolis/SimCity Clone in Emacs Lisp

https://github.com/vkazanov/elcity
173•vkazanov•2d ago•49 comments

Show HN: Falcon's Eye (isometric NetHack) running in the browser via WebAssembly

https://rahuljaguste.github.io/Nethack_Falcons_Eye/
6•rahuljaguste•17h ago•1 comments

Show HN: Daily-updated database of malicious browser extensions

https://github.com/toborrm9/malicious_extension_sentry
14•toborrm9•23h ago•7 comments

Show HN: Horizons – OSS agent execution engine

https://github.com/synth-laboratories/Horizons
23•JoshPurtell•1d ago•5 comments

Show HN: Local task classifier and dispatcher on RTX 3080

https://github.com/resilientworkflowsentinel/resilient-workflow-sentinel
25•Shubham_Amb•1d ago•2 comments

Show HN: Fitspire – a simple 5-minute workout app for busy people (iOS)

https://apps.apple.com/us/app/fitspire-5-minute-workout/id6758784938
2•devavinoth12•11h ago•0 comments

Show HN: I built a RAG engine to search Singaporean laws

https://github.com/adityaprasad-sudo/Explore-Singapore
4•ambitious_potat•12h ago•4 comments

Show HN: Sem – Semantic diffs and patches for Git

https://ataraxy-labs.github.io/sem/
2•rs545837•13h ago•1 comments

Show HN: A password system with no database, no sync, and nothing to breach

https://bastion-enclave.vercel.app
12•KevinChasse•23h ago•16 comments

Show HN: GitClaw – An AI assistant that runs in GitHub Actions

https://github.com/SawyerHood/gitclaw
10•sawyerjhood•1d ago•0 comments

Show HN: Craftplan – I built my wife a production management tool for her bakery

https://github.com/puemos/craftplan
568•deofoo•5d ago•166 comments
Open in hackernews

Show HN: Chonky – a neural text semantic chunking goes multilingual

https://huggingface.co/mirth/chonky_mmbert_small_multilingual_1
43•hessdalenlight•3mo ago
TLDR: I’m expanding the family of text-splitting Chonky models with new multilingual model.

You can learn more about this neural approach in a previous post: https://news.ycombinator.com/item?id=43652968

Since the release of the first distilbert-based model I’ve released two more models based on a ModernBERT. All these models were pre-trained and fine-tuned primary on English texts.

But recently mmBERT(https://huggingface.co/blog/mmbert) has been released. This model pre-trained on massive dataset that contains 1833 languages. So I had an idea of fine-tuning a new multilingual Chonky model.

I’ve expanded training dataset (that previously contained bookcorpus and minipile datasets) with Project Gutenberg dataset which contains books in some widespread languages.

To make the model more robust for real-world data I’ve removed punctuation for last word for every training chunk with probability of 0.15 (no ablation was made for this technique though).

The hard part is evaluation. The real-world data are typically OCR'ed markdown, transcripts of calls, meeting notes etc. and not a clean book paragraphs. I didn’t find such labeled datasets. So I used what I had: already mentioned bookcorpus and Project Gutenberg validation, Paul Graham essays, concatenated 20_newsgroups.

I also tried to fine-tune the bigger mmBERT model (mmbert-base) but unfortunately it didn’t go well — metrics are weirdly lower in comparison with a small model.

Please give it a try. I'll appreciate a feedback.

The new multilingual model: https://huggingface.co/mirth/chonky_mmbert_small_multilingua...

All the Chonky models: https://huggingface.co/mirth

Chonky wrapper library: https://github.com/mirth/chonky

Comments

kamranjon•3mo ago
This is interesting! I once trained a t5 model by removing newlines from Wikipedia text and it worked surprisingly well / at the time the context length was the biggest issue.

Another, not so easy to solve issue was conversational dialogue type data, which wasn’t super well represented in the training data.

I’ve always wanted to come back to working on the problem again, because I think it’s very interesting and we will have a bunch of unstructured text as a result of STT models like whisper that do a great job of transcribing/translating but generally don’t format anything.

nvdnadj92•3mo ago
In case you need conversational data for the experiment you want to try, I developed an open-source cli tool [1] that create transcripts from voice chats on discord. Feel free to try it out!

[1] https://github.com/naveedn/audio-transcriber

CjHuber•3mo ago
Took me a minute to realize this is not about Chonkie. I would be interested in how this compares to the other's semantic chunking approach
jimmySixDOF•3mo ago
you can read the labels this (-y) uses modernBERT and even has an eval comparison to the (-ie) in it's GitHub so you can see the improvement as tested -- although if you want to do vanilla rules based chinking for whatever reason your data needs then (-ie) is still good.
TZubiri•3mo ago
That example looks terribly useless. Maybe there's an actually useful application you had in mind? I don't know say

Chonk("Hey I forgot my password, this is Tom from X Company") = ("Hey", "I forgot my password", "this is Tom from X Company")

Even then it doesn't quite look helpful.

freakynit•3mo ago
This is absolutely useless. Tried a few examples yesterday using hf demo. Fcking retarded af.

It literally splitted the text in-between of related texts while at the same time kept unrelated texts together, even though the embedding limit was far off.

I genuinely wanted this to work. I mean this. But nop. This shit did not work at all.

RAG is still fcked because if chunking issues. GraphRAG doesn't work correctly either unless you are willing to throw a lot of money during ingestion time.