frontpage.
newsnewestaskshowjobs

Made with ♥ by @iamnishanth

Open Source @Github

fp.

What I learned building "comfortable" LED strip lighting

1•emmasuntech•1m ago•0 comments

Calibre adds AI "discussion" feature

https://lwn.net/Articles/1049886/
1•pykello•7m ago•0 comments

From Pariah to Power: The Hindu Right's 100-Year Quest to Reshape India

https://www.nytimes.com/2025/12/26/world/asia/india-hindu-right-rss-modi.html
1•vinni2•11m ago•0 comments

Cilician Pirates

https://en.wikipedia.org/wiki/Cilician_pirates
1•zeristor•13m ago•0 comments

Show HN: An experiment in fact-level discussion

https://fact2check.com/
1•DTutorin•15m ago•1 comments

China hits US defence firms with sanctions over arms sales to Taiwan

https://www.reuters.com/business/aerospace-defense/china-sanctions-us-defence-firms-individuals-o...
1•rguiscard•15m ago•0 comments

Show HN: Why is ML inference still so ad-hoc in practice?

1•krish678•16m ago•0 comments

Claude Skills Repo

https://github.com/ComposioHQ/awesome-claude-skills
1•msis•16m ago•0 comments

Wastrel, a Profligate Implementation of WebAssembly

https://wingolog.org/archives/2025/10/30/wastrel-a-profligate-implementation-of-webassembly
1•tosh•20m ago•0 comments

Luxury Apartments Are Bringing Rent Down in Some Big Cities

https://www.bloomberg.com/news/articles/2025-12-23/luxury-apartments-are-bringing-rent-down-in-au...
1•EvgeniyZh•22m ago•0 comments

Chrome Extension: IMDB Ratings for Netflix

https://chromewebstore.google.com/detail/imdb-ratings-for-netflix/ijgmnkckioccploiclkoanofpiichoib
1•reverseblade2•27m ago•1 comments

Show HN: Fileloom – HTML to PDF API with 70 Handlebars Helpers

https://fileloom.io/
1•migambi•36m ago•0 comments

Funded Online Scholarships You Can Apply for Today

https://grantjobsandscholarship.blogspot.com/2025/12/fully-funded-online-scholarships-you.html
2•frankchidera900•39m ago•0 comments

The Mexican government engineered Cancun to attract American dollars

https://twitter.com/pitdesi/status/2004035773935636922
1•MrBuddyCasino•42m ago•0 comments

Graph Algorithms in Rayon

https://davidlattimore.github.io/posts/2025/11/27/graph-algorithms-in-rayon.html
1•PaulHoule•42m ago•0 comments

RCE Vulnerability in CurseForge Launcher

https://elliott.diy/blog/curseforge/
1•lemonyte•43m ago•0 comments

Calcutta High Court Flags Unfair Exclusion of IndiaMART by ChatGPT

https://www.livelaw.in/high-court/calcutta-high-court/strong-prima-facie-case-calcutta-high-court...
2•rustoo•45m ago•0 comments

Hubble Sees Possible Runaway Black Hole Creating a Trail of Stars

https://science.nasa.gov/missions/hubble/hubble-sees-possible-runaway-black-hole-creating-a-trail...
2•_____k•45m ago•0 comments

Soho 1851: The Greatest Christmas Meal Ever Cooked

https://londonist.com/london/food-and-drink/soho-1851-the-greatest-christmas-meal-ever-cooked
1•zeristor•45m ago•0 comments

Geometric Algorithms for Translucency Sorting in Minecraft [pdf]

https://douira.dev/assets/document/douira-master-thesis.pdf
7•HeliumHydride•46m ago•10 comments

Vulcain: HTTP/2 server push for fast and idiomatic client-driven REST APIs

https://github.com/dunglas/vulcain
2•fanf2•47m ago•0 comments

Show HN: A music streaming server to browse the Spotify Archive

https://github.com/swingmx/swingmusic
1•cwilvx•51m ago•2 comments

We compare how humans and LLMs form judgments across 7 epistemological stages

https://twitter.com/ValerioCapraro/status/2003457899805233538
1•r721•53m ago•1 comments

Animated AI

https://animatedai.github.io/
1•frozenseven•55m ago•0 comments

London's Christmas Pudding History

https://londonist.com/london/food-and-drink/londons-christmas-pudding-history
1•zeristor•55m ago•0 comments

Wallbleed: A Memory Disclosure Vulnerability in the Great Firewall of China

https://gfw.report/publications/ndss25/en/
1•jedisct1•1h ago•0 comments

The Making of TiDB X: Origins, Architecture, and What's to Come

https://www.pingcap.com/blog/tidbx-origins-architecture/
1•LittleCat38•1h ago•0 comments

Brown shooting suspect: gruelling academic climate may have taken mental toll

https://www.theguardian.com/us-news/2025/dec/26/brown-shooting-suspect-gruelling-academic-climate...
3•vinni2•1h ago•0 comments

Russia's attempt to rein in illicit market for leaked data backfires

https://www.theguardian.com/world/2025/dec/26/russia-selling-personal-data-leaks-probiv-ukraine-s...
7•ljf•1h ago•0 comments

Starmer considers Australian-style ban on social media

https://www.telegraph.co.uk/politics/2025/12/21/starmer-considers-australian-style-social-media-ban/
6•_____k•1h ago•3 comments
Open in hackernews

Sierpiński Triangle? In My Bitwise and?

https://lcamtuf.substack.com/p/sierpinski-triangle-in-my-bitwise
217•guiambros•7mo ago

Comments

jcul•7mo ago
I can't dismiss the cookie popup on this page. After rejecting or accepting cookies it reloads and reappears.

Apologies for a comment not related to the content, but it makes it difficult to read the article on mobile.

jcul•7mo ago
Really interesting, and surprising article though!
IceDane•7mo ago
Same problem here. Firefox on Android.
Jolter•7mo ago
Same. Safari on iPhone.
adrian_b•7mo ago
This might be a Firefox problem.

I have never seen it before, but today I have seen it in 3 or 4 sites linked from HN.

What has worked for me is to click "Accept all", then, after the pop-up reappears, click "Only necessary", which makes the pop-up disappear.

Clicking "Only necessary" without clicking before that "Accept all" has not worked. Likewise, clicking multiple times one of those options has not worked.

jrockway•7mo ago
Substack is kind of a weird site, but this newsletter in particular is worth subscribing to and getting in your email.
peterburkimsher•7mo ago
Wolfram did a lot of research into cellular automata, and the Sierpinski Triangle kept showing up there too:

https://www.wolframscience.com/nks/

GuB-42•7mo ago
This one in particular: https://en.wikipedia.org/wiki/Rule_90
jesuslop•7mo ago
You get those also doing a Pascal triangle mod 2, so a xor. Is a zoom-out fractal as oposed to Mandelbrot set.
anthk•7mo ago
True. pas.f in Forth

    : .r u.r ;
    : position  ( row -- )  cr  33 swap 2 *  - spaces  ;
    : pas ( 0 ... 0 -- 0 ... 0 )    0 >r begin
    over + >r  dup 0= until
    begin  r> dup while  dup 4 .r  repeat  ;
    : pass  ( -- )    0 1 0    18 0 ?do  dup position  >r  pas  r>  1+  loop      drop  ;
    : pax  ( 0 ... 0 -- )  drop begin 0= until ;
    : pascal  ( -- )  pass pax ;

    pascal
    cr
The same mod2:

    : .r u.r ;
    : position  ( row -- )  cr  33 swap 2 *  - spaces  ;
    : pas ( 0 ... 0 -- 0 ... 0 )    0 >r begin
     over + >r  dup 0= until
     begin  r> dup while  dup 2 mod 4 .r  repeat  ;
    : pass  ( -- )    0 1 0    18 0 ?do  dup position  >r  pas  r>  1+  loop     drop  ;
    : pax  ( 0 ... 0 -- )  drop begin 0= until ;
    : pascal  ( -- )  pass pax ;

    pascal
    cr
A Forth for people in a hurry:

     git clone https://github.com/howerj/subleq
     cd subleq
     sed -i 's,0 constant opt.control,1 constant opt.control,g' subleq.fth
     gmake subleq
     ./subleq subleq.dec < subleq.fth > new.dec
     ./subleq new.dec < pas.f
kragen•7mo ago
Output from `cr pascal` in GForth:

                                    1
                                  1   1
                                1   0   1
                              1   1   1   1
                            1   0   0   0   1
                          1   1   0   0   1   1
                        1   0   1   0   1   0   1
                      1   1   1   1   1   1   1   1
                    1   0   0   0   0   0   0   0   1
                  1   1   0   0   0   0   0   0   1   1
                1   0   1   0   0   0   0   0   1   0   1
              1   1   1   1   0   0   0   0   1   1   1   1
            1   0   0   0   1   0   0   0   1   0   0   0   1
          1   1   0   0   1   1   0   0   1   1   0   0   1   1
        1   0   1   0   1   0   1   0   1   0   1   0   1   0   1
      1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
    1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1
   1   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   1 ok
By changing `4 .r` to `bl + dup dup dup emit emit emit emit` I get this:

                                      !!!!
                                    !!!!!!!!
                                  !!!!    !!!!
                                !!!!!!!!!!!!!!!!
                              !!!!            !!!!
                            !!!!!!!!        !!!!!!!!
                          !!!!    !!!!    !!!!    !!!!
                        !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
                      !!!!                            !!!!
                    !!!!!!!!                        !!!!!!!!
                  !!!!    !!!!                    !!!!    !!!!
                !!!!!!!!!!!!!!!!                !!!!!!!!!!!!!!!!
              !!!!            !!!!            !!!!            !!!!
            !!!!!!!!        !!!!!!!!        !!!!!!!!        !!!!!!!!
          !!!!    !!!!    !!!!    !!!!    !!!!    !!!!    !!!!    !!!!
        !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
      !!!!                                                            !!!!
    !!!!!!!!                                                        !!!!!!!! ok
But this is not using bitwise AND, just the Pascal's triangle approach. (Interestingly, you can reformulate that as a neighborhood-2 2-state 1-dimensional cellular automaton pretty easily; it occurs in a couple of different guises in Wolfram's catalog.)

Here's an ASCII-art version that uses AND as Michał describes:

    32 value size  : line cr size 0 do dup i and if bl else [char] # then dup emit emit loop drop ;
    : pasand size 0 do i line loop ;                                                           
Running `pasand` then yields this:

    ################################################################
    ##  ##  ##  ##  ##  ##  ##  ##  ##  ##  ##  ##  ##  ##  ##  ##  
    ####    ####    ####    ####    ####    ####    ####    ####    
    ##      ##      ##      ##      ##      ##      ##      ##      
    ########        ########        ########        ########        
    ##  ##          ##  ##          ##  ##          ##  ##          
    ####            ####            ####            ####            
    ##              ##              ##              ##              
    ################                ################                
    ##  ##  ##  ##                  ##  ##  ##  ##                  
    ####    ####                    ####    ####                    
    ##      ##                      ##      ##                      
    ########                        ########                        
    ##  ##                          ##  ##                          
    ####                            ####                            
    ##                              ##                              
    ################################                                
    ##  ##  ##  ##  ##  ##  ##  ##                                  
    ####    ####    ####    ####                                    
    ##      ##      ##      ##                                      
    ########        ########                                        
    ##  ##          ##  ##                                          
    ####            ####                                            
    ##              ##                                              
    ################                                                
    ##  ##  ##  ##                                                  
    ####    ####                                                    
    ##      ##                                                      
    ########                                                        
    ##  ##                                                          
    ####                                                            
    ##                                                               ok
anthk•7mo ago
Straight from the blog, too, from C to Forth:

   : sier cr 32 0 do 32 0 do i j and if ."   " else ." * " then loop cr loop ;
   sier

Output from eforth/subleq (with do...loop set in the config):

    * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
    *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   
    * *     * *     * *     * *     * *     * *     * *     * *     
    *       *       *       *       *       *       *       *       
    * * * *         * * * *         * * * *         * * * *         
    *   *           *   *           *   *           *   *           
    * *             * *             * *             * *             
    *               *               *               *               
    * * * * * * * *                 * * * * * * * *                 
    *   *   *   *                   *   *   *   *                   
    * *     * *                     * *     * *                     
    *       *                       *       *                       
    * * * *                         * * * *                         
    *   *                           *   *                           
    * *                             * *                             
    *                               *                               
    * * * * * * * * * * * * * * * *                                 
    *   *   *   *   *   *   *   *                                   
    * *     * *     * *     * *                                     
    *       *       *       *                                       
    * * * *         * * * *                                         
    *   *           *   *                                           
    * *             * *                                             
    *               *                                               
    * * * * * * * *                                                 
    *   *   *   *                                                   
    * *     * *                                                     
    *       *                                                       
    * * * *                                                         
    *   *                                                           
    * *                                                             
    *                                                               
     ok
     ok
kragen•7mo ago
That looks nicer than my version. But you should put the `cr` before the inner loop, not after it. That way you can remove the `cr` before the outer loop.
animal531•7mo ago
Nothing much to do with your great post, but I almost REALLY liked that first pyramid, but the last line being off threw me visually, so I had to straighten it out:

                                    1
                                  1   1
                                1   0   1
                              1   1   1   1
                            1   0   0   0   1
                          1   1   0   0   1   1
                        1   0   1   0   1   0   1
                      1   1   1   1   1   1   1   1
                    1   0   0   0   0   0   0   0   1
                  1   1   0   0   0   0   0   0   1   1
                1   0   1   0   0   0   0   0   1   0   1
              1   1   1   1   0   0   0   0   1   1   1   1
            1   0   0   0   1   0   0   0   1   0   0   0   1
          1   1   0   0   1   1   0   0   1   1   0   0   1   1
        1   0   1   0   1   0   1   0   1   0   1   0   1   0   1
      1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
    1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1
  1   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   1
dvt•7mo ago
Just a heads up, all (binary?) logical operators produce fractals. This is pretty well-known[1].

[1] https://icefractal.com/articles/bitwise-fractals/

wang_li•7mo ago
The change rate in binary notation is fractal.
Timwi•7mo ago
Ask yourself why you added the “pretty well-known” phrase, and consider xkcd 1053.
marginalia_nu•7mo ago
It would be interesting to see how this generalizes to other bases.

Base 3 has nearly 20,000 operators, of which 729 are commutative.

dvt•7mo ago
Yeah, I'm pretty sure as long as you have symmetry somewhere (e.g. a commutative operation), you'll get self-similar patterns.
eru•7mo ago
That's more or less, because binary numbers are already fractal.
zX41ZdbW•7mo ago
Sierpinski also sounds nice in music. Examples here: https://github.com/ClickHouse/NoiSQL
gjm11•7mo ago
Here's a possibly-too-highbrow explanation to complement the nice simple one in the OP.

"As everyone knows", you get a Sierpinski triangle by taking the entries in Pascal's triangle mod 2. That is, taking binomial coefficients mod 2.

Now, here's a cute theorem about binomial coefficients and prime numbers: for any prime p, the number of powers of p dividing (n choose r) equals the number of carries when you write r and n-r in base p and add them up.

For instance, (16 choose 8) is a multiple of 9 but not of 27. 8 in base 3 is 22; when you add 22+22 in base 3, you have carries out of the units and threes digits.

OK. So, now, suppose you look at (x+y choose x) mod 2. This will be 1 exactly when no 2s divide it; i.e., when no carries occur when adding x and y in binary; i.e., when x and y never have 1-bits in the same place; i.e., when x AND y (bitwise) is zero.

And that's exactly what OP found!

coderatlarge•7mo ago
i really love the result you quote about the carries. do you know where it has been applied by any chance?
gjm11•7mo ago
I don't know of applications offhand, sorry. For me it's in the "appreciated for its own sake" category :-).
coderatlarge•7mo ago
i can see that for sure. do you have a reference by any chance? chatgpt hallucinates various references given the result. knuth’s “concrete mathematics” might have it.
gjm11•7mo ago
I don't know whether it's in Concrete Mathematics, but perhaps https://en.wikipedia.org/wiki/Kummer%27s_theorem will do?

(That page has a link to another beautiful theorem with a similar feel, Lucas's theorem: if p is prime, then (n choose r) mod p is the product of the (n_i choose r_i) where n_i and r_i are corresponding digits of n and r when written in base p.)

gjm11•7mo ago
I checked: the result is in Concrete Mathematics, as exercise 5.36, but there is no attribution to Kummer there.

Incidentally, I found the name of the theorem (and the Wikipedia page about it) using a new kind of tool called a "search engine". It's a bit like asking ChatGPT except that it hardly ever hallucinates. You should try it! :-)

svat•7mo ago
For what it's worth: Concrete Mathematics does have an attribution to Kummer — it's just that the credits are given separately in Appendix C, "Credits for Exercises", where on page 634, next to 5.36 (the exercise number you mentioned), you can find "Kummer [230, p. 116]" and [230] (on page 621, in Appendix B, "Bibliography") gives the full citation:

> E. E. Kummer, “Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen,” Journal für die reine und angewandte Mathematik 44 (1852), 93–146. Reprinted in his Collected Papers, volume 1, 485–538.

Also, the answer to exercise 5.36 says “See [226] for extensions of this result to generalized binomial coefficients” and [226] (on page 620) is:

> Donald E. Knuth and Herbert S. Wilf, “The power of a prime that divides a generalized binomial coefficient,” Journal für die reine und angewandte Mathematik 396 (1989), 212–219

which of course begins (https://www2.math.upenn.edu/~wilf/website/dm36.pdf) by citing Kummer. (Looks like the authors published in the same journal as Kummer, 137 years later!)

gjm11•7mo ago
Oh, good catch! I hadn't noticed they had a separate credits-for-exercises section.

I did notice that ex 5.36 references a paper of Knuth & Wilf, but references aren't transitive :-).

coderatlarge•7mo ago
thank you for your help in tracking this down! i will check it out…
coderatlarge•7mo ago
thank you! what an excellent and delightful related result as well :)
ethan_smith•7mo ago
This elegantly explains why (x & y) == 0 produces Sierpinski triangles: it's equivalent to checking whether (x+y choose x) mod 2 equals 1, directly connecting bitwise operations to binomial coefficients.
tomrod•7mo ago
I prefer mine au naturale 3-adic.

https://m.youtube.com/watch?v=tRaq4aYPzCc

Just kidding. This was a fun read.

kragen•7mo ago
The 31-byte demo "Klappquadrat" by T$ is based on this phenomenon; I wrote a page about how it works a few years ago, including a working Python2 reimplementation with Numpy: http://canonical.org/~kragen/demo/klappquadrat.html

I should probably update that page to explain how to use objdump correctly to disassemble MS-DOG .COM files.

If you like making fractal patterns with bitwise arithmetic, you'll probably love http://canonical.org/~kragen/sw/dev3/trama. Especially if you like stack machines too. The page is entirely in Spanish (except for an epilepsy safety warning) but I suspect that's unlikely to be a problem in practice.

userbinator•7mo ago
Sierpinski triangles are definitely a common sight in demoscene productions, to the point that they're acceptable in the smaller sizes, but others will think you're not good enough if that's all you do for a 64k or above entry.
marvinborner•7mo ago
Very cool! This basically encodes a quad-tree of bits where every except one quadrant of each subquadrant recurses on the parent quad-tree.

The corresponding equivalent of functional programming would be Church bits in a functional quad-tree encoding \s.(s TL TR BL BR). Then, the Sierpinski triangle can be written as (Y \fs.(s f f f #f)), where #f is the Church bit \tf.f!

Rendering proof: https://lambda-screen.marvinborner.de/?term=ERoc0CrbYIA%3D

zabzonk•7mo ago
I draw these with paper and pen when I am extremely bored in meetings.
susam•7mo ago
I’d like to share some little demos here.

Bitwise XOR modulo T: https://susam.net/fxyt.html#XYxTN1srN255pTN1sqD

Bitwise AND modulo T: https://susam.net/fxyt.html#XYaTN1srN255pTN1sqN0

Bitwise OR modulo T: https://susam.net/fxyt.html#XYoTN1srN255pTN1sqDN0S

Where T is the time coordinate. Origin for X, Y coordinates is at the bottom left corner of the canvas.

You can pause the animation anytime by clicking the ‘■’ button and then step through the T coordinate using the ‘«’ and ‘»’ buttons.

kragen•7mo ago
Gorgeous!
msarnoff•7mo ago
Munching squares!
ttoinou•7mo ago
Thank you for sharing. The third one has some kind of trippy 3d effect in the first seconds
Recursing•7mo ago
Shadertoy link: https://www.shadertoy.com/view/MllcW2

And, xor, and or are red, green and blue

anyfoo•7mo ago
Ah. Is that why LFSRs (linear feedback shift registers) and specifically PRBS generators (pseudo-random binary sequences) produce Sierpinski triangles as well?

PRBS sequences are well-known, well-used "pseudo-random" sequences that are, for example, used to (non-cryptographically!) scramble data links, or to just test them (Bit Error Rate).

I made my own PRBS generator, and was surprised that visualizing its output, it was full of Sierpinski triangles of various sizes.

Even fully knowing and honoring that they have no cryptographic properties, it didn't feel very "pseudo-random" to me.

modeless•7mo ago
Try this one liner pasted into a Unix shell:

  cc -w -xc -std=c89 -<<<'main(c){int r;for(r=32;r;)printf(++c>31?c=!r--,"\n":c<r?" ":~c&r?" `":" #");}'&&./a.*
It used to be cooler back when compilers supported weird K&R style C by default. I got it under 100 characters back then, and the C part was just 73 characters. This version is a bit longer but works with modern clang. The 73-character K&R C version that you can still compile today with GCC is:

  main(c,r){for(r=32;r;)printf(++c>31?c=!r--,"\n":c<r?" ":~c&r?" `":" #");}
Terr_•7mo ago
Instructions unclear, machine rooted. :p
modeless•7mo ago
Hey, at least it's not doing `curl | bash` like some people's installers do. It's only 109 characters, you can review that right? :-P
eru•7mo ago
For all I know, the whole thing might just be a very convoluted call to curl?
_7acn•7mo ago
Sierpinski pirated it from Razor 1911 :)
lenerdenator•7mo ago
It's more likely than you think.
ChuckMcM•7mo ago
Y'all would really like https://www.gathering4gardner.org/ :-)

I tend to like lcamtuf's Electronics entries a bit better (I'm an EE after all) but I find he has a great way of explaining things.

msephton•7mo ago
I first saw these sorts of bitwise logic patterns at https://twitter.com/aemkei/status/1378106731386040322 (2021)
fiforpg•7mo ago
> the magic is the positional numeral system

— of course. In the same way the (standard) Cantor set consists of precisely those numbers from the interval [0,1] that can be represented using only 0 and 2 in their ternary expansion (repeated 2 is allowed, as in 1 = 0.2222...). If self-similar fractals can be conveniently represented in positional number systems, it is because the latter are self-similar.

pacaro•7mo ago
There are so many ways to produce sierpinski gaskets.

It you specify n points and the pick a new point at random, then iteratively randomly select (uniformly) one of the original n points and move the next point to the mid point of the current point and the selected point. Coloring those points generates a sierpinski triangle or tetrahedron or whatever the n-1 dimensional triangle is called

linschn•7mo ago
That's called a simplex :)

The same as in the simplex algorithm to solve linear programming problems.

CrazyStat•7mo ago
I programmed this on my TI-83 back in the day and spent many hours watching it generate triangles during boring classes.

You can generate many other fractals (e.g. fern shapes) in a similar way, though the transformations are more complicated than “move halfway to selected point”.

deadfoxygrandpa•7mo ago
yes, those are called iterated function systems (IFS) fractals
tikili•7mo ago
Munching squares: https://tiki.li/show/#cod=VYxLCoAwDET3PcWsFWql4s7D1Fo/oBZqkf...
immibis•7mo ago
basically, whenever a shape contains 3 connected couples of itself, you get a deformed Sierpinski triangle.
gitroom•7mo ago
been down the bitwise fractal rabbit hole more times than i can count and honestly, i never get tired of these patterns - you think people start seeing shapes like this everywhere after a while or is that just me
tpoacher•7mo ago
I reached a similar result when researching all possible "binary subpixel" configurations that would give a pixel its fuzzy value. Arranging the configurations in ascending order row-wise for one pixel and column-wise for the other, performing an intersection between the two pixels, and plotting against their resulting fuzzy value results in a sierpinski triangle.

(if interested, see fig 4.3, page 126 of my thesis, here: https://ora.ox.ac.uk/objects/uuid:dc352697-c804-4257-8aec-08...)

Cool stuff. Especially the bottom right panel, you might not have expected that kind of symmetry in the intersection when looking at the individual components.