One interesting example of such a problem and why it is important to solve it was recently published in Nature and has led to interesting drug candidates for modulating macrophage function in autoimmunity: https://www.nature.com/articles/s41586-024-07501-1
There is a concerning gap between prediction and causality. In problems, like this one, where lots of variables are highly correlated, prediction methods that only have an implicit notion of causality don't perform well.
Right now, SOTA seems to use huge population data to infer causality within each linkage block of interest in the genome. These types of methods are quite close to Pearl's notion of causal graphs.
This has existed for at least a decade, maybe two.
> There is a concerning gap between prediction and causality.
Which can be bridged with protein prediction (alphafold) and non-coding regulatory predictions (alphagenome) amongst all the other tools that exist.
What is it that does not exist that you "found it disappointing that they ignored"?
dekhn•49m ago
I parted ways with Google a while ago (sundar is a really uninspiring leader), and was never able to transfer into DeepMind, but I have to say that they are executing on my goals far better than I ever could have. It's nice to see ideas that I had germinating for decades finally playing out, and I hope these advances lead to great discoveries in biology.
It will take some time for the community to absorb this most recent work. I skimmed the paper and it's a monster, there's just so much going on.