Int[csc(x) dx] = 2 Int[csc(2u) du]
= 2 Int[du / (2 cos(u) sin(u))]
= Int[sec^2(u) du / tan(u)]
= log(tan(u)) + C
= log(tan(x/2)) + C
Then Int[sec(x)] = Int[csc(u)] = log(tan(u/2)) + C = log(tan(pi/4 - x/2)) + C.
Of course, this was no use to Mercator, because the logarithm hadn't been invented yet. But you aren't just pulling a magic factor out of nowhere. There is definitely a bit of cleverness in rearranging the fraction — you have to be used to trying to find instances of the power rule when dealing with integrals of fractions.
ziofill•2h ago
dataflow•1h ago