frontpage.
newsnewestaskshowjobs

Made with ♥ by @iamnishanth

Open Source @Github

fp.

OpenCiv3: Open-source, cross-platform reimagining of Civilization III

https://openciv3.org/
632•klaussilveira•13h ago•187 comments

Start all of your commands with a comma

https://rhodesmill.org/brandon/2009/commands-with-comma/
20•theblazehen•2d ago•2 comments

The Waymo World Model

https://waymo.com/blog/2026/02/the-waymo-world-model-a-new-frontier-for-autonomous-driving-simula...
930•xnx•18h ago•548 comments

What Is Ruliology?

https://writings.stephenwolfram.com/2026/01/what-is-ruliology/
34•helloplanets•4d ago•26 comments

How we made geo joins 400× faster with H3 indexes

https://floedb.ai/blog/how-we-made-geo-joins-400-faster-with-h3-indexes
110•matheusalmeida•1d ago•28 comments

Unseen Footage of Atari Battlezone Arcade Cabinet Production

https://arcadeblogger.com/2026/02/02/unseen-footage-of-atari-battlezone-cabinet-production/
43•videotopia•4d ago•1 comments

Jeffrey Snover: "Welcome to the Room"

https://www.jsnover.com/blog/2026/02/01/welcome-to-the-room/
10•kaonwarb•3d ago•10 comments

Show HN: Look Ma, No Linux: Shell, App Installer, Vi, Cc on ESP32-S3 / BreezyBox

https://github.com/valdanylchuk/breezydemo
222•isitcontent•13h ago•25 comments

Monty: A minimal, secure Python interpreter written in Rust for use by AI

https://github.com/pydantic/monty
213•dmpetrov•13h ago•103 comments

Show HN: I spent 4 years building a UI design tool with only the features I use

https://vecti.com
323•vecti•15h ago•142 comments

Sheldon Brown's Bicycle Technical Info

https://www.sheldonbrown.com/
372•ostacke•19h ago•94 comments

Microsoft open-sources LiteBox, a security-focused library OS

https://github.com/microsoft/litebox
359•aktau•19h ago•181 comments

Hackers (1995) Animated Experience

https://hackers-1995.vercel.app/
478•todsacerdoti•21h ago•234 comments

Show HN: If you lose your memory, how to regain access to your computer?

https://eljojo.github.io/rememory/
275•eljojo•15h ago•164 comments

An Update on Heroku

https://www.heroku.com/blog/an-update-on-heroku/
404•lstoll•19h ago•273 comments

Dark Alley Mathematics

https://blog.szczepan.org/blog/three-points/
85•quibono•4d ago•21 comments

Delimited Continuations vs. Lwt for Threads

https://mirageos.org/blog/delimcc-vs-lwt
25•romes•4d ago•3 comments

PC Floppy Copy Protection: Vault Prolok

https://martypc.blogspot.com/2024/09/pc-floppy-copy-protection-vault-prolok.html
56•kmm•5d ago•3 comments

Vocal Guide – belt sing without killing yourself

https://jesperordrup.github.io/vocal-guide/
16•jesperordrup•3h ago•9 comments

How to effectively write quality code with AI

https://heidenstedt.org/posts/2026/how-to-effectively-write-quality-code-with-ai/
245•i5heu•16h ago•189 comments

Was Benoit Mandelbrot a hedgehog or a fox?

https://arxiv.org/abs/2602.01122
13•bikenaga•3d ago•2 comments

Introducing the Developer Knowledge API and MCP Server

https://developers.googleblog.com/introducing-the-developer-knowledge-api-and-mcp-server/
54•gfortaine•10h ago•22 comments

I spent 5 years in DevOps – Solutions engineering gave me what I was missing

https://infisical.com/blog/devops-to-solutions-engineering
141•vmatsiiako•18h ago•64 comments

Understanding Neural Network, Visually

https://visualrambling.space/neural-network/
281•surprisetalk•3d ago•37 comments

I now assume that all ads on Apple news are scams

https://kirkville.com/i-now-assume-that-all-ads-on-apple-news-are-scams/
1060•cdrnsf•22h ago•436 comments

Why I Joined OpenAI

https://www.brendangregg.com/blog/2026-02-07/why-i-joined-openai.html
133•SerCe•9h ago•119 comments

Learning from context is harder than we thought

https://hy.tencent.com/research/100025?langVersion=en
177•limoce•3d ago•96 comments

Show HN: R3forth, a ColorForth-inspired language with a tiny VM

https://github.com/phreda4/r3
70•phreda4•12h ago•14 comments

Female Asian Elephant Calf Born at the Smithsonian National Zoo

https://www.si.edu/newsdesk/releases/female-asian-elephant-calf-born-smithsonians-national-zoo-an...
28•gmays•8h ago•11 comments

FORTH? Really!?

https://rescrv.net/w/2026/02/06/associative
63•rescrv•20h ago•23 comments
Open in hackernews

Unprecedented optical clock network lays groundwork for redefining the second

https://phys.org/news/2025-06-unprecedented-optical-clock-network-lays.html
24•wglb•7mo ago

Comments

wglb•7mo ago
Referenced article in Optica: https://opg.optica.org/optica/abstract.cfm?doi=10.1364/OPTIC...
adrian_b•7mo ago
Also "Roadmap towards the redefinition of the second"

https://iopscience.iop.org/article/10.1088/1681-7575/ad17d2

of which these experiments are a step towards this goal.

ludicrousdispla•7mo ago
... a man with one clock knows what time it is, but a man with two can never be sure.
adrian_b•7mo ago
Unless he uses the ticks coming from the two clocks to generate a tick signal whose frequency is the geometric mean of the 2 tick frequencies (possibly by using a weighted mean, when one clock is known to be better than the other), and then displays the time by counting the ticks from the synthetic tick signal.

This is how the redefinition of the second will work, by using many different kinds of optical clocks, instead of the single cesium-based microwave clock that is used now.

In fact, today the big laboratories have many atomic clocks, whose clock frequencies are averaged to compute the time, even when the clocks are of the same kind. The international atomic time, TAI, is computed by averaging the clocks of all important laboratories.

torcete•7mo ago
I wonder why they use the geometric mean. Are the clocks expected to have spurious noisy ticks?
IAmBroom•7mo ago
All quantum things do.
adrian_b•7mo ago
The most important reason is that the frequencies of optical clocks can be very different, from ultraviolet to infrared.

When the frequency of one clock is 10 times greater than the frequency of another, it is hard to find a significance for any other kind of mean, except the geometric.

More clearly, if the input frequencies have the same relative uncertainty, the geometric mean will preserve that relative uncertainty. If the input frequencies have different relative uncertainties, the geometric mean will have a relative uncertainty that is intermediate between them.

Other kinds of means do not offer guarantees about the relative uncertainty when the ratio of the inputs is high. If one frequency is much bigger than the others, the arithmetic mean will depend only on that frequency, the others will not matter.

zokier•7mo ago
I would have thought that the frequencies (or their ratios) of atomic clocks could be calculated somehow from the fundamental physics. Like somehow the energy levels of electron shells could be determined from the configuration of the nucleus (how many protons/neutrons it has), and from that the transition frequency could be calculated. But apparently that is not the case. I guess the number of particles in these atoms is way too high for computing with our current quantum models?
staunton•7mo ago
It's always a question of what precision you want.

For really any physical system, when describing it at ever greater precision, more and more effects become relevant until you can't calculate it anymore (or even your theory itself breaks down). In this case, the precision they need is extremely high so this is a problem.

For the vast majority of systems, there's no point in going there because the precision of experiments is too low (which means that the experiments feature even more poorly controlled effects which would be unreasonable to model).

perlgeek•7mo ago
Our models use single atoms (or single molecules), and for those we have pretty good models that we can solve numerically, at least.

In a gas, the atoms or molecules only interact weakly, so you just get some known effects like a line broadening due to thermal motion of the particles

But you really still want experimental validation before you declare any of these as a new standard, for a whole variety of reasons:

* it's often complicated to calculate multiple excitations

* you might forget something in the models, like isotope ratios

* the models don't really give you a good sense of how impurities in your materials will affect the clocks

* there might be some practical issues, like glass (used in the optical fibers) not being a very good medium for some frequencies of light that would otherwise look promising as a time standard

... and so on.

zokier•7mo ago
The thing that piqued my curiosity was this note from the paper:

> This strongly suggests that the recommended frequency value for the secondary representation of the second is offset from the unperturbed transition frequency by approximately twice its assigned uncertainty of 1.3×10^-15.

> the recommended frequency value is strongly dominated by a single absolute frequency measurement [53], which in light of recent results is to be considered suspect.

So I guess we don't have a usable theoretical reference value here.

tsimionescu•7mo ago
> Our models use single atoms (or single molecules), and for those we have pretty good models that we can solve numerically, at least.

We can only solve these with assumptions, like assuming that protons or neutrons are indivisible particles with experimentally determined sizes and perfectly spherical shapes - even though we know very well that they are in fact collections of quarks and gluons whose size and shape is fully determined by more fundamental intercations. We are nowhere near a point where we could compute anything about a whole hydrogen atom using only the standard model and no other assumptions. Quantum chromodynamics is far to complex to allow for a perfect simulation like this.

fsh•7mo ago
The accuracy of atomic clocks is much better than our understanding of fundamental physics.

The best calculable atomic system is atomic hydrogen, and state-of-the-art quantum electrodynamics calculations reach a relative accuracy of around 1E-13 for its energy levels. However, already at the 1E-10 level, the structure of the proton becomes significant which can currently not be calculated from first principles. Instead, the proton size is taken as a free parameter which is determined from the measurements.

In contrast, the best realizations of the SI second are caesium fountain clocks which achieve relative uncertainties in the 1E-16 range. Clocks based on optical transitions (rather than microwave transitions) have now broken the 1E-18 barrier. Calculating atomic structure to this level is currently completely unthinkable, even for a system as simple as hydrogen.