frontpage.
newsnewestaskshowjobs

Made with ♥ by @iamnishanth

Open Source @Github

fp.

Start all of your commands with a comma

https://rhodesmill.org/brandon/2009/commands-with-comma/
142•theblazehen•2d ago•42 comments

OpenCiv3: Open-source, cross-platform reimagining of Civilization III

https://openciv3.org/
668•klaussilveira•14h ago•202 comments

The Waymo World Model

https://waymo.com/blog/2026/02/the-waymo-world-model-a-new-frontier-for-autonomous-driving-simula...
949•xnx•19h ago•551 comments

How we made geo joins 400× faster with H3 indexes

https://floedb.ai/blog/how-we-made-geo-joins-400-faster-with-h3-indexes
122•matheusalmeida•2d ago•33 comments

Unseen Footage of Atari Battlezone Arcade Cabinet Production

https://arcadeblogger.com/2026/02/02/unseen-footage-of-atari-battlezone-cabinet-production/
53•videotopia•4d ago•2 comments

Show HN: Look Ma, No Linux: Shell, App Installer, Vi, Cc on ESP32-S3 / BreezyBox

https://github.com/valdanylchuk/breezydemo
229•isitcontent•14h ago•25 comments

Jeffrey Snover: "Welcome to the Room"

https://www.jsnover.com/blog/2026/02/01/welcome-to-the-room/
16•kaonwarb•3d ago•19 comments

Vocal Guide – belt sing without killing yourself

https://jesperordrup.github.io/vocal-guide/
28•jesperordrup•4h ago•16 comments

Monty: A minimal, secure Python interpreter written in Rust for use by AI

https://github.com/pydantic/monty
223•dmpetrov•14h ago•117 comments

Show HN: I spent 4 years building a UI design tool with only the features I use

https://vecti.com
330•vecti•16h ago•143 comments

Hackers (1995) Animated Experience

https://hackers-1995.vercel.app/
494•todsacerdoti•22h ago•243 comments

Sheldon Brown's Bicycle Technical Info

https://www.sheldonbrown.com/
381•ostacke•20h ago•95 comments

Microsoft open-sources LiteBox, a security-focused library OS

https://github.com/microsoft/litebox
359•aktau•20h ago•181 comments

Show HN: If you lose your memory, how to regain access to your computer?

https://eljojo.github.io/rememory/
288•eljojo•17h ago•169 comments

An Update on Heroku

https://www.heroku.com/blog/an-update-on-heroku/
412•lstoll•20h ago•278 comments

Was Benoit Mandelbrot a hedgehog or a fox?

https://arxiv.org/abs/2602.01122
19•bikenaga•3d ago•4 comments

PC Floppy Copy Protection: Vault Prolok

https://martypc.blogspot.com/2024/09/pc-floppy-copy-protection-vault-prolok.html
63•kmm•5d ago•6 comments

Dark Alley Mathematics

https://blog.szczepan.org/blog/three-points/
90•quibono•4d ago•21 comments

How to effectively write quality code with AI

https://heidenstedt.org/posts/2026/how-to-effectively-write-quality-code-with-ai/
256•i5heu•17h ago•196 comments

Delimited Continuations vs. Lwt for Threads

https://mirageos.org/blog/delimcc-vs-lwt
32•romes•4d ago•3 comments

What Is Ruliology?

https://writings.stephenwolfram.com/2026/01/what-is-ruliology/
44•helloplanets•4d ago•42 comments

Where did all the starships go?

https://www.datawrapper.de/blog/science-fiction-decline
12•speckx•3d ago•5 comments

Introducing the Developer Knowledge API and MCP Server

https://developers.googleblog.com/introducing-the-developer-knowledge-api-and-mcp-server/
59•gfortaine•12h ago•25 comments

Female Asian Elephant Calf Born at the Smithsonian National Zoo

https://www.si.edu/newsdesk/releases/female-asian-elephant-calf-born-smithsonians-national-zoo-an...
33•gmays•9h ago•12 comments

I now assume that all ads on Apple news are scams

https://kirkville.com/i-now-assume-that-all-ads-on-apple-news-are-scams/
1066•cdrnsf•23h ago•446 comments

I spent 5 years in DevOps – Solutions engineering gave me what I was missing

https://infisical.com/blog/devops-to-solutions-engineering
150•vmatsiiako•19h ago•67 comments

Understanding Neural Network, Visually

https://visualrambling.space/neural-network/
288•surprisetalk•3d ago•43 comments

Why I Joined OpenAI

https://www.brendangregg.com/blog/2026-02-07/why-i-joined-openai.html
149•SerCe•10h ago•138 comments

Learning from context is harder than we thought

https://hy.tencent.com/research/100025?langVersion=en
183•limoce•3d ago•98 comments

Show HN: R3forth, a ColorForth-inspired language with a tiny VM

https://github.com/phreda4/r3
73•phreda4•13h ago•14 comments
Open in hackernews

Principles for production AI agents

https://www.app.build/blog/six-principles-production-ai-agents
128•carlotasoto•6mo ago

Comments

carlotasoto•6mo ago
Practical lessons from building production agentic systems
roadside_picnic•6mo ago
Did we just give up on evaluations these days?

Over, and over again my experience building production AI tools/systems has been that evaluations are vital for improving performance.

I've also see a lot of people proposing some variation of "LLM as critic" as a solution to this, but I've never seen empirical evidence that this works. Further more, I've worked with a pretty well respected researcher in this space and in our internal experiment we found that LLMs where not good critics.

Results are always changing, so I'm very open to the possibility that someone has successfully figured out how to use "LLM as critic" but without the foundations of some basic evals to compare by, I remain skeptical.

Aurornis•6mo ago
Evals are a core part of any up to date LLM team. If some team was just winging it without robust eval practices they’re not to be trusted.

> Further more, I've worked with a pretty well respected researcher in this space and in our internal experiment we found that LLMs where not good critics

This is an idea that seems so obvious in retrospect, after using LLMs and getting so many flattering responses telling us we’re right and complementing our inputs.

For what it’s worth, I’ve heard from some people who said they were getting better results by intentionally using different LLM models for the eval portion. Feels like having a model in the same family evaluate its own output triggers too many false positives.

Uehreka•6mo ago
I once asked Claude Code (Opus 4) to review a codebase I’d built, and threw in at the end of my prompt something like “No need to be nice about it.”

Now granted, you could say it was “flattering that instruction”, but it sure didn’t flatter me. It absolutely eviscerated my code, calling out numerous security issues (which were real), all manner of code smells and bad architectural decisions, and ended by saying that the codebase appeared to have been thrown together in a rush with no mind toward future maintenance (which was… half true… maybe more true than I’d like to admit).

All this to say that it is far from obvious that LLMs are intrinsically bad critics.

Herring•6mo ago
I have an idea. What if we used a third LLM to evaluate how good the secondary LLM is at critiquing the primary LLM.
colonCapitalDee•6mo ago
The problem isn't that LLMs can't be critical, it's that LLMs don't have taste. It's easy to get an LLM to give praise, and it's easy to get an LLM to give criticism, but getting an LLM to praise good things and criticize bad things is currently impossible for non-trival inputs. That's not say that prompting your LLM to generate criticism is useless, it's just that any LLM prompted to generate criticism is going to criticize things are that actually fine, just like how an LLM prompted to generate praise (which is effectively the default behavior) is going to praise things that are deeply not fine.
bubblyworld•6mo ago
Absolutely matches my experience - it can still be super helpful, but AI have an extreme version of an anchoring bias.
jauhar_•6mo ago
Another issue is that the behaviour of the LLMs is not very consistent.
sudhirb•6mo ago
For coding agents, evaluations are tricky - thorough evaluation tasks tend to be slow and/or expensive and/or display a high degree of variance over N attempts. You could run a whole benchmark like SWE Bench or Terminal Bench against a coding agent on every change but it quickly becomes infeasible.
roadside_picnic•6mo ago
I used to own the eval suite for a coding agent, it's certainly doable, even when it requires SQL + tables etc. We even had support for a wide range of data options ranging from canned csv data to plugging into prod to simulate the user experience, all easily configurable at eval run time. It also supported agentic flows where the results from one eval could be chained to the next (with a known correct answer being an optional send to check the framework end to end in the case of node failure).

Interestingly enough, we started with hundreds of evals, but after that experience my advice has become: less evals tied more closely to specific features and product ambitions.

By that I mean: some evals should serve as a warning ("uh oh, that eval failed, don't push to prod"), others as a mile stone ("woohoo! we got it work!"), and all should be informed by the product road map. You basically should understand where the product is going just by looking over the eval suite.

And, if you don't have evals, you really don't know if you're moving the needle at all. There were multiple situations where a tweak to a prompt passed an initial vibe check, but when run against the full eval suite, clearly performed worse.

The other piece of advice would be: evals don't have to sophisticated, just repeatable and agnostic to who's running them. Heck even "vibe checks" can be good evals, if they're written down and they need to pass some consensus among multiple people around whether they passed or not.

criemen•6mo ago
Running evals aren't the problem, the problem is acquiring or building a high-quality, non-contaminated dataset.

https://arxiv.org/abs/2506.12286 makes a very compelling case that swebench (and in extension, anything that's based on public source code) is most likely overestimating your agents actual capabilities.

simonw•6mo ago
This is the best guide I've seen to the LLM-as-judge pattern: https://hamel.dev/blog/posts/llm-judge/index.html
glial•6mo ago
This is fantastic, thank you for sharing.
edmundsauto•6mo ago
Hamel has a ton of great and free content on YouTube. He and Shreya Shankar are a breath of fresh air.
abhgh•6mo ago
Evals somehow seem to be very very underrated, which is concerning in a world where we are moving towards (or trying to) systems with more autonomy.

Your skepticism of "llm-as-a-judge" setups is spot on. If your LLM can make mistakes/hallucinate, then of course, your judge llm can too. In practice, you need to validate your judges and possibly adapt to your task based on sample annotated data. You might adapt them by trial and error, or prompt optimization, e.g., using DSPy [1], or learning a small correction model on top of their outputs, e.g., LLM-Rubric [2] or Prediction Powered Inference [3].

In the end, using the LLM as a judge confers just these benefits:

1. It is easy to express complex evaluation criteria. This does not guarantee correctness.

2. Seen as a model, it is easy to "train", i.e., you get all the benefits of in-context learning, e.g., prompt based, few-shot.

But you still need to evaluate and adapt them. I have notes from a NeurIPS workshop from last year [4]. Btw, love your username!

[1]https://dspy.ai/

[2]https://aclanthology.org/2024.acl-long.745/

[3]https://www.youtube.com/watch?v=TlFpVpFx7JY

[4] https://blog.quipu-strands.com/eval-llms

prats226•6mo ago
I see that in tool calling, we usually specify just the inputs to functions and not what typed output is expected from function.

In DSL style agents, giving LLMs info about what structured inputs are needed to call functions as well as what are outputs expected would probably result in better planning?

SrslyJosh•6mo ago
"Don't."
lacoolj•6mo ago
Always hard to take an article seriously when it has typos, some of which are repeated ("promt" in the graphic on Principle 2)
henriquegodoy•6mo ago
I've been tinkering with agentic systems for a while now, and this post nails some key pain points that hit close to home. The emphasis on splitting context and designing tight feedback loops feels spot on—I've seen agents go off the rails without them, hallucinating solutions because the prompt was too bloated or the validation was half-baked. It's like building a machine where every part needs to click just right, or else you're debugging forever.

What really resonates is the bit about frustrating behaviors signaling deeper system issues, not just model quirks. In my own experiments, I've had agents stubbornly ignore tools because I forgot to expose the right APIs, and it made me rethink how we treat these as "intelligent" when they're really just following our flawed setups. It pushes us toward more robust orchestration, where humans handle the high-level intentions and AI fills in the execution gaps seamlessly.

This ties into broader ideas on how AI interfaces will evolve as models get smarter. I extrapolate more of this thinking and dive deeper into human–AI interfaces on my blog if anyone’s interested in checking it out: https://henriquegodoy.com/blog/stream-of-consciousness