I'm not able to get my agentic system to use this model though as it just says "I don't have the tools to do this". I tried modifying various agent prompts to explicitly say "Use foo tool to do bar" without any luck yet. All of the ToolSpec that I use are annotated etc. Pydantic objects and every other model has figured out how to use these tools.
I find that on my M2 Mac that number is a rough approximation to how much memory the model needs (usually plus about 10%) - which matters because I want to know how much RAM I will have left for running other applications.
Anything below 20GB tends not to interfere with the other stuff I'm running too much. This model looks promising!
I'll give it a try with aider to test the large context as well.
There's context length, but then, how does that relate to input length and output length? Should I just make the numbers match? 32k is 32k? Any pointers?
Just for ollama, see: https://github.com/ollama/ollama/blob/main/docs/faq.md#how-c...
I’m using llama.cpp though, so I can’t confirm these methods.
And ollama keeps taking it out of memory every 4 minutes.
LM studio with MLX on Mac is performing perfectly and I can keep it in my ram indefinitely.
Ollama keep alive is broken as a new rest api call resets it after. I’m surprised it’s this glitched with longer running calls and custom context length.
I’ve been using Cursor and I’m kind of disappointed. I get better results just going back and forth between the editor and ChatGPT
I tried localforge and aider, but they are kinda slow with local models
Try hooking aider up to gemini and see how the speed is. I have noticed that people in the localllama scene do not like to talk about their TPS.
However I've also ran into 2 things: 1) most models don't support tools, sometimes it's hard to find a version of the model that correctly uses tools, 2) even with good TPS, since the agents are usually doing chain-of-thought and running multiple chained prompts, the experience feels slow - this is even true with Cursor using their models/apis
About 1 minute initial prompt processing time on an m4 max
Using LM studio because the ollama api breaks if you set the context to 128k.
P.S. I am not a lawyer.
"Apple Intelligence" isn't it but it would be nice to know without churning through tests whether I should bother keeping around 2-3 models for specific tasks in ollama or if their performance is marginal there's a more stable all-rounder model.
[0] - https://github.com/ggml-org/llama.cpp
[1] - https://lmstudio.ai/
To determine how much space a model needs, you look at the size of the quantized (lower precision) model on HuggingFace or wherever it's hosted. Q4_K_M is a good default. As a rough rule of thumb, this will be a little over half the size of the parameters, if they were in gigabytes. For Devstral, that's 14.3GB. You will also need 1-8GB more than that, to store the context.
For example: A 32GB Macbook Air could use Devstral at 14.3+4GB, leaving ~14GB for the system and applications. A 16GB Macbook Air could use Gemma 3 12B at 7.3+2GB, leaving ~7GB for everything else. An 8GB Macbook could use Gemma 3 4B at 2.5GB+1GB, but this is probably not worth doing.
There is no single "best" model yet, it seems.
That's on an M4 Max with 64GB of RAM. I wish I had gotten the 128GB model, though — given that I run large docker containers that consume ~24GB of my RAM, things can get tight.
It's kind-of like asking, for which kind of road-trip would you use a Corolla hatchback instead of a Jeep Grand Wagoneer? For me the answer would be "almost all of them", but for others that might not be the case.
This is still too much, a single 4090 costs $3k
What a ripoff, considering that a 5090 with 32GB of VRAM also currently costs $3k ;)
(Source: I just received the one I ordered from Newegg a week ago for $2919. I used hotstocks.io to alert me that it was available, but I wasn’t super fast at clicking and still managed to get it. Things have cooled down a lot from the craziness of early February.)
I hope not. Mine was $1700 almost 2 years go, and the 5090 is out now...
I am hopeful that the prices will drop a bit more with Intel's recently announced Arc Pro B60 with 24GB VRAM, which unfortunately has only half the memory bandwidth of the RTX 3090.
Not sure why other hardware makers are so slow to catch up. Apple really was years ahead of the competition with the M1 Ultra with 800 GB/s memory bandwidth.
Interesting. I've never heard this.
Also, Mistral has been killing it with their most recent models. I pay for Le Chat Pro, it's really good. Mistral Small is really good. Also building a startup with Mistral integration.
I haven't tried it out yet but every model I've tested from Mistral has been towards the bottom of my benchmarks in a similar place to Llama.
Would be very surprised if the real life performance is anything like they're claiming.
My general impression so far is that they aren't quite up to Claude 3.7 Sonnet, but they're quite good. More than adequate for an "AI pair coding assistant", and suitable for larger architectural work as long as you break things into steps for it.
Qwen3 is a step backwards for me for example. And GLM4 is my current goto despite everyone saying it's "only good at html"
The 70b cogito model is also really good for me but doesn't get any attention.
I think it depends on our projects / languages we're using.
Still looking forward to trying this one though :)
Wouldn't mind some of my taxpayer money flowing towards apache/mit licensed models.
Even if just to maintain a baseline alternative & keep everyone honest. Seems important that we don't have some large megacorps run away with this.
But do we need 20 companies copying each other and doing the same thing?
Like, is that really competition? I'd say competition is when you do something slightly different, but I guess it's subjective based on your interpretation of what is a commodity and what is proprietary.
To my view, everyone is outright copying and creating commodity markets:
OpenAI: The OG, the Coke of Modern AI
Claude: The first copycat, The Pepsi of Modern AI
Mistral: Euro OpenAI
DeepSeek: Chinese OpenAI
Grok/xAI: Republican OpenAI
Google/MSFT: OpenAI clone as a SaaS or Office package.
Meta's Llama: Open Source OpenAI
etc...
Some AIs will be good at coding (perhaps in a particular language or ecosystem), some at analyzing information and churning out a report for you, and some will be better at operating in physical spaces.
total duration: 35.016288581s load duration: 21.790458ms prompt eval count: 1244 token(s) prompt eval duration: 1.042544115s prompt eval rate: 1193.23 tokens/s eval count: 213 token(s) eval duration: 33.94778571s eval rate: 6.27 tokens/s
total duration: 4m44.951335984s load duration: 20.528603ms prompt eval count: 1502 token(s) prompt eval duration: 773.712908ms prompt eval rate: 1941.29 tokens/s eval count: 1644 token(s) eval duration: 4m44.137923862s eval rate: 5.79 tokens/s
Compared to an API call that finishes in about 20% of the time it feels a bit slow without the recommended graphics card and what not is all I'm saying.
In terms of benchmarks, it seems unusually well tuned for the model size but I suspect its just a case of gaming the measurement by testing against it as part of the development of the model which is not bad in and of itself since I suspect every LLM who is in this space marketed to IT folks does the same thing tbh so its objective enough given that as a rough gauge of "Is this usable?" without heavy time expense testing it.
0) A desktop PC with one or more graphics cards, or 1) A Mac with Apple Silicon
The same page also gives instructions for running the model through VLLM on a GPU, but it doesn't seem like it supports quantization, so it may require multiple GPUs since the instructions say "with at least 2 GPUs".
For local LLMs Apple Silicon has really shown the value of shared memory, even if that comes at the cost of raw GPU power. Even if it's half the speed of an array of GPUs, being able to load the mid-sized models at all is a huge plus.
LM studio MLX with full 128k context.
It works well but has a long 1 minute initial prompt processing time.
I wouldn’t buy a laptop for this, I would wait for the new AMD 32gb gpu coming out.
If you want a laptop I even consider my m4 max too slow to use more than just here or there.
It melts if you run this and battery goes down asap. Have to use it docked for full speed really
AnhTho_FR•12h ago