Cybersecurity and digital systems was not the issue but gets thirteen pages of proposed measures. I feel this could have been left out.
Electric System Operation was the issue and gets seven pages of proposed measures.
https://d1n1o4zeyfu21r.cloudfront.net/WEB_Incident_%2028A_Sp...
https://en.wikipedia.org/wiki/2016_South_Australian_blackout
Completely solved with lithium based grid storage at key locations btw. This grid storage has also been massively profitable for it's owners https://en.wikipedia.org/wiki/Hornsdale_Power_Reserve#Revenu...
Australia currently has 4 of the 5 largest battery storage systems under construction as a result of this profit opportunity; https://en.wikipedia.org/wiki/Battery_energy_storage_system#...
You can also read numerous stories of how Australia's lithium ion grid storage systems have prevented blackouts in many cases. https://www.teslarati.com/tesla-big-battery-south-australia-... The fact is that the batteries responsiveness is the fastest of any system at correcting gaps like this. 50/60hz is nothing for a lithium ion battery nor are brief periods of multi-gigawatt draw/dumping as needed.
There's even articles that if Europe investing in battery storage systems like Australia they'd have avoided this. https://reneweconomy.com.au/no-batteries-no-flexibility-spai...
Actually this is typically an issue for grid batteries.
Spinning generators can easily briefly go to 10x the rated current for a second or so to smooth out big anomalies.
Stationary batteries inverters can't do 10x current spikes ever - the max they can get to is more like 1.2x for a few seconds.
That means you end up needing a lot of batteries to provide the same spinning reserve as one regular power station.
That equivalent inertia can only be done for short periods but that's exactly what grids need in stability - there's generally no lack of total generation, just a need to jump in and smooth out spikes.
You can't build a dam for that price, nor could you do it in under 100 days from contract signing as that battery was built. Batteries are definitely the answer here. The 'more spinning mass' answers don't make sense since Australia literally solved the above problem in a much cheaper way already.
Is it that common that dams are already existing in nearby-ish pairs with the sufficient height difference? And that we haven't done this already?
Doing this is good where we can. But it has geographical limitations. Batteries don't so much.
You can always use a ton more concrete and force new locations, but the best locations have already been utilized and scaling law of batteries has brought them to the point where they're more competitive than new hydro for this kind of use.
Basically I'm dubious. I'm sure there are grids somewhere that have misprovisioned their inverter capacity, but I don't buy that battery facilities are inherently unable to buffer spikes. Is there a cite I can read?
Australia's largest power plant has 2.9GW of inertial generation assuming all generators are running at 100%. As in the small battery substation alone comes close to the countries largest power station. I'm not sure where the idea that lithium ion can't dump power quickly comes from. They are absolutely phenomenal at it. Australia's building dozens of these substations too since they are so cheap and reduce overall power costs. It's a win from all points of view.
More inverters in parallel will achieve the same end goal - fast frequency response.
Misaligned oscillation can occurs under ANY load.
Sadly, some news outlets are probably only going to look at the recommendations and read "cybersecurity" and (even though they are common sense recommendations) assume there might be more to say about the matter.
Oh wait, they already did: https://www.telegraph.co.uk/business/2025/06/18/renewable-en...
Ed: Do I need a /s tag here or something? My point was that we shouldn't worry too much about about the presentation of the report, its actual contents will be spun to suit any narrative regardless.
Now I'm curious about what's in the confidential version of the report.
> Incidents detected during equipment start-up - Firstly, there is information consistent with the fact that several installations with the obligation of autonomous start-up were finally unable to provide this service in a stable manner, joining the system only once voltage had arrived from outside (from another of the "islands", normally anchored in one of the interconnections). This slowed down the start-up of the "skeleton" of the electricity system that would later make it possible to replenish the supply to demand.
The rest of the ~2 pages in that section is redacted.
I would like to see: "We have simulated the complete 200 and 400 kV grid of the iberian peninsula and western europe, and can reproduce the situation that occurred. Any one of the following changes would have prevented the issue, and we suggest implementing them all for redundancy. This simulation will be re-run every day from now on to identify future cases similar incidents could occur"
> However, as is common in networks and information systems in any sector, other risks have been identified, such as vulnerabilities, deficiencies or inadequate configurations of security measures, which may expose networks and systems to potential risks, for which a series of measures are proposed.
> The ultimate cause of the peninsular electrical zero on April 28th was a phenomenon of overvoltages in the form of a "chain reaction" in which high voltages cause generation disconnections, which in turn causes new increases in voltage and thus new disconnections, and so on.
> 1. The system showed insufficient dynamic voltage control capabilities sufficient to maintain stable voltage
> 2. A series of rhythmic oscillations significantly conditioned the system, modifying its configuration and increasing the difficulties for voltage stabilization.
If I understand it correctly (and like software, typical), it was a positive feedback-loop. Since there wasn't enough voltage control, some other station had to be added but got overloaded instead, also turning off, and then on to the next station.
Late addition: It was very helpful for me to read through the "ANNEX X. BRIEF BASICS OF THE ELECTRIC SYSTEM" (page 168) before trying to read the report itself, as it explains a lot of things that the rest of the report (rightly) assumes you already know.
Due to interactions between different generators, there can be instabilities causing voltage or frequency or reactive power to deviate outside of spec. A simple example might be two generators where one surges while the other drops back, then vice versa. The measurement (by the network operator) of these effects is poor for Spain - shown by the simple example that they have large oscillations that they couldn't explain.
There's path dependent healing and correction of problems by different generators, which overall leads to network stability. However the network operator here is not actually resolving cause and effect, and does not have the insight to manage their stability properly.
In this case you can see them trying a few things to inject changes that they hope will bring stability - e.g. tying many connections hoping that adding generators together into one network will resolve to a stable outcome.
Are there countries that have a better design for their electricity network control systems?
Disclaimer: I don't design electricity networks nor electricity markets. And the above is ignoring loads (loads are mostly less problematic for control than generation).
The actions that were taken did not strike me as out of the ordinary.
How do these oscilations start? I understand that voltage isn't necessarily equal across the network, where frequency is. But that only allows oscillating, it doesn't cause it. Is this a basis inductor capacitor oscillation? Is it the small delay in inverters between measuring voltage and regulating their output? (seems unlikely, given that renewables aren't blamed) or is there some other source of (delayed) feedback.
And why do generators cut off at a high voltage? Is it a signal of 'too much power'? Is it to protect the generator from some sort of damage?
fuoqi•3h ago
>These changes in production can be significant (if the price signals from the markets are sufficiently strong) and affect the energy flows in the networks and the stresses in the nodes
>Regarding the correlation between changes in generation and voltage: if the generation operating at power factor falls (with the existing regulation, the renewable generation), there is a decrease in the reactive energy absorbed by these installations (since it is reduced proportionally to the reduction in generation). Additionally, as the energy transmitted by the networks decreases due to this reduction in generation, the capacitive effects of the electrical circuits increase as they become more discharged, which causes an increase in reactive energy. Both effects (higher reactive power production by the circuits and lower reactive power absorption) push the voltages upwards.
As expected, renewables played the leading role in destabilization of the grid which led to the collapse. Of course, these instabilities could be worked around on the grid level using various (not cheap) measures, so you may argue that it's not renewables' "fault", but the fact still stands: above the certain threshold of renewable generation the current grid architecture becomes increasingly unstable.
I wrote exactly about it in this comment https://news.ycombinator.com/item?id=43831523 and its child comment, but the fans of renewables just flagged it.
matsemann•3h ago
Your other comment probably got flagged because it started with a huge straw man and had multiple unwarranted jabs in it.
fuoqi•3h ago
Also, have you read after the market part? Please watch this video https://www.youtube.com/watch?v=7G4ipM2qjfw if the last quote is gibberish to you. It discusses somewhat different issues, but the point still stands.
pkilgore•2h ago
pdpi•1h ago
plorg•1h ago
eldaisfish•1h ago
The reality is that electricity is complex and that renewable energy presents a new set of problems, problems to which we do not yet have complete solutions.
floatrock•58m ago
Why is the problem the cheap source of supply rather than the market rules and incentives that made everything act the way it did?
Your comment suggests move back to good ol' expensive fossil generation instead of looking at how to bring the market rules up to date with evolving technologies.
martinald•34m ago
Looks like there are a multitude of schemes of various vintages in Spain, which tl;dr basically give you a guaranteed price per MWh you generate. So imagine you get a 100eur/MWh subsidy for a (legacy) solar plant. The market price is €-20/MWh. You will still continue to produce power until the price reaches -100MW/h. Even worse are some contracts for difference (poorly thought through) which give you a guaranteed price regardless of what the market is at. So even if the price was -1,000eur/MWh the government or grid operator would still give you your €50/MWh (and the subsidy would be 1,050/MWh!).
The problem is if you reform this (and it is happening worldwide) solar is much, much less appealing. Because suddenly your solar plant which was getting (say) a guaranteed 70/MWh all year round suddenly does not make money for 6 months of the year at least at peak sun hours.
On top of all this, you have a lot of domestic solar in places like Spain. The grid operator _cannot_ control these assets in nearly all circumstances. They will continue to dump power into the grid regardless of the market price. This again will change but it requires an awful lot of work to retrofit invertors with remote control capability OR a lot of public backlash for charging end customers who bought solar in "good faith" now getting hit with peak time negative prices (so they change their behaviour).
I think my core message would be _any_ negative power prices is a sign of market failure. Acceptable in rare extreme occurrences, but the fact most of europe has highly negative prices very frequently is telling you the grid and market design is not able to handle what is going on.
shakow•2h ago
There is not much fast trading to be done on a nuke/gas/coal/hydro powerplant ramping up or down, but there is a lot of instability (and thus market volatility) to be found in fast varying solar/wind conditions.
stephen_g•40m ago
Renewables just change one set of challenges for another set, at the end of the day it's all manageable.
mlyle•7m ago
Don't forget rotational inertia. This gives the system a high-frequency response mode: it can resist sudden demand changes through stored kinetic energy, effectively acting as a low-pass filter with a fast dominant pole.
As you get a smaller share of generation with rotational inertia, you need a lot more buffering on short to medium timescales.
And, of course, it doesn't help for longer timescales that in many places renewable production slopes off in the late afternoon right when demand slopes upwards for cooling.
wavefunction•3h ago
>the most plausible explanation is that it is due to market reasons (prices)
Seems to be market conditions or manipulations or inefficiencies in the market.
pdpi•3h ago
baq•2h ago
Yeask•2h ago
plorg•37m ago
mlyle•17m ago
I don't see that.
> and factually incorrect.
Then substantiate your point.
Stability is one of the things grid operators pay for-- not just production.
mslansn•9m ago
xwolfi•1m ago
The stability of a nuclear plant vs the instability of a solar far when a cloud passes over.
fuoqi•2h ago
baq•2h ago
philipkglass•2h ago
The incident was NOT caused by a lack of system inertia. Rather, it was triggered by a voltage issue and the cascading disconnection of renewable generation plants, as previously indicated. Higher inertia would have only resulted in a slightly slower frequency decline. However, due to the massive generation loss caused by voltage instability, the system would still have been unrecoverable.
[1] https://news.ycombinator.com/item?id=44360052
baq•2h ago
eldaisfish•1h ago
rcxdude•1h ago
(Spinning mass on its own doesn't do much to deal with the voltage fluctuations. It's entirely something that's reactive to grid frequency, which is the most 'global' indicator of supply vs demand in a grid, since it can't fluctuate locally. But voltage and current can vary wildly in different parts of the grid, and required separate management)