Given the difficulty of radiating heat away I would have expected the opposite.
Especially considering the incentive to send up as little battery as possible, and the very predictable day/night cycle leading to the ability to precisely predict how small a battery you can get away with...
The CATL Naxtra sodium-ion battery will debut in the Changan Nevo A06 sedan, delivering an estimated range of around 400 kilometers (249 miles) on the China Light-Duty Test Cycle.
and It delivers 175 watt-hours per kilogram of energy density, which is lower than nickel-rich chemistries but roughly on par with LFPAFAIK most EVs already use heat pumps today, so the future happens whenever sodium batteries become mainstream.
But if they add buttons back as planned, I might be willing to try a new id.4 in 5-10 years.
https://www.energy.gov/energysaver/fuel-economy-cold-weather
At -40F (-40C), it's generally good practice to just stay inside and not drive at all...
Is that actually true once the engine has reached operating temperature?
interested in hot desert weather performance which often gets lost in the averages.
Most of the winter it tells me I can only do between 100 and 120 miles. It is definitely half the EPA range with climate controls disabled at 0F. (Ask me how I know).
I love driving it in the winter. I don't have a pressing need to go long distances, so that is not a current concern. Not having to stand outside in the bitter cold to fuel up in absolutely awesome.
There are EVs on the market that do much, much better than mine in cool weather and I now know what to look for.
To really penetrate the midwest it will take a car that can realistically do a road trip to Florida from say Duluth, MN or Michigan's UP in the winter.
Because not only do folks in the midwest drive long distances without a second thought, they sometimes do it in the cold of winter so they can get a break from the snow.
So yes still getting 90% of the range at -40C does sound attractive.
The EV described in the article has a standardized range of 250 miles. This isn't a range monster in any condition. There is some gesturing that Sodium batteries don't require as much active heating in cold conditions. But nothing is quantified.
As usual with sci-tech broadly and batteries specifically: it's exciting that sodium batteries are coming to market; we can be optimistic that maybe in the future they will provide lots of range, or be less expensive, or maybe less flammable than today's lithium batteries. But the marketing hype is running miles ahead of reality.
The marketing hype is the true range monster
"The Long-Range Version sets a new record for light commercial vehicles with a single-pack capacity of 253 kWh, achieving a maximum range of 800km."
That would be some 720 km at -40 C if the numbers are correct. I'm not well versed in this area and not sure if these batteries are comparable to those in personal vehicles, but the ones I've heard owners talk about have a reach at about half that if it's cold at all.
If we put aside the politics, what are the actual statistics behind lithium battery fires today? And don't LFP's have negligible fire risk?
I feel like my gasser F250 had a higher risk of spontaneously combusting.
https://carnewschina.com/2026/01/22/catl-unveils-worlds-firs...
Crustal abundance up to 1000x that of lithium - pretty much every nation has effectively unlimited supply, it's no longer a barrier or a geographically limited resource like lithium.
No significant damage going down to 0V, can even be stored at 0V - much safer than lithium which gets excitable once out of its prefered voltage range.
Cold weather performance down to -30C - northern latitude users don't have as much range anxiety in the winter.
Basically, the only problem I see is that companies that have made significant long-term investments in lithium could take a big hit. Countries that banked on their lithium reserves as a key future resource for will have to adjust their strategy.
Lithium batteries will likely still have a place in the high performance realm but but for the majority of run-of-the-mill applications - everything from customer electronics to EVs to offgrid storage - it's hard to see how sodium-ion wouldn't quickly replace it.
pkulak•1h ago
woeirua•54m ago
jillesvangurp•34m ago
rootusrootus•15m ago
loeg•45m ago
adrian_b•4m ago
This means that if you do not use the car for some time, you may need to recharge it before you can use it again.
Otherwise I agree with what you said.